初一数学 第六章 实数 知识点归纳
第六章 实数 知识点归纳
一、实数的概念及分类 (3分)
1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数
实数 负有理数
正初一数学 第六章 实数 知识点归纳
第六章 实数 知识点归纳
一、实数的概念及分类 (3分)
1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数
实数 负有理数
正无理数
无理数 无限不循环小数
负无理数
整数包括正整数、零、负整数。
正整数又叫自然数。
正整数、零、负整数、正分数、负分数统称为有理数。
2、无理数
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如32,7等;(2)有特定结构的数,…等;
(3)有特定意义的数,如圆周率π,或化简后含有π的数,如3
π+8等; 3. 实数与数轴上点的关系:
实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。
与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大
二、实数的倒数、相反数和绝对值 (3分)
1、相反数
从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数
如果a 与b 互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
4、 无限小数是有理数(×) 无限小数是无理数(×)
有理数是无限小数(×) 无理数是无限小数(√)
数轴上的点都可以用有理数表示(×) 有理数都可以由数轴上的点表示(√) 数轴上的点都可以用无理数表示(×) 无理数都可以由数轴上的点表示(√) 数轴上的点都可以用实数表示(√) 实数都可以由数轴上的点表示(√)
三、平方根、算数平方根和立方根
1、平方根
如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±
”。 2、算术平方根
正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。 a (a ≥0) 0≥a
==a a 2 ;注意a 的双重非负性:
-a (a ?>- ②,0b a b a =?=-
初一数学 第六章 实数 知识点归纳 来自淘豆网m.daumloan.com转载请标明出处.