下载此文档

概率论与数理统计-公式(全).doc


文档分类:高等教育 | 页数:约52页 举报非法文档有奖
1/52
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/52 下载此文档
文档列表 文档介绍
概率论与数理统计-公式(全)
概率论与数理统计 公式(全)
2012-6-1
1
概率论与数理统计 公式(全)
2012-6-1
1
概率论与数理统计 公式(全)
2012-6-1
1
分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:
(1),, (2)。
概率论与数理统计 公式(全)
2012-6-1
1
(2)连续型随机变量的分布密度
设是随机变量的分布函数,若存在非负函数,对任意实数,有

则称为连续型随机变量。称为的概率密度函数或密度函数,简称概率密度。
密度函数具有下面4个性质:
1° 。
2° 。
(3)离散与连续型随机变量的关系
积分元在连续型随机变量理论中所起的作用与在离散型随机变量理论中所起的作用相类似。
概率论与数理统计 公式(全)
2012-6-1
1
(4)分布函数
设为随机变量,是任意实数,则函数
称为随机变量X的分布函数,本质上是一个累积函数。
可以得到X落入区间的概率。分布函数表示随机变量落入区间(– ∞,x]内的概率。
分布函数具有如下性质:
1° ;
2° 是单调不减的函数,即时,有 ;
3° , ;
4° ,即是右连续的;
5° 。
对于离散型随机变量,;
对于连续型随机变量, 。
(5)八大分布
0-1分布
P(X=1)=p, P(X=0)=q
概率论与数理统计 公式(全)
2012-6-1
1
二项分布
在重贝努里试验中,设事件发生的概率为。事件发生的次数是随机变量,设为,则可能取值为。
, 其中,
则称随机变量服从参数为,的二项分布。记为。
当时,,,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。
泊松分布
设随机变量的分布律为
,,,
则称随机变量服从参数为的泊松分布,记为或者P()。
泊松分布为二项分布的极限分布(np=λ,n→∞)。
超几何分布
随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。
几何分布
,其中p≥0,q=1-p。
随机变量X服从参数为p的几何分布,记为G(p)。
概率论与数理统计 公式(全)
2012-6-1
1
均匀分布
设随机变量的值只落在[a,b]内,其密度函数在[a,b]上为常数,即
 
a≤x≤b
其他,
则称随机变量在[a,b]上服从均匀分布,记为X~U(a,b)。
分布函数为
 
a≤x≤b
0, x<a,
 
 
1, x>b。
 
当a≤x1<x2≤b时,X落在区间()内的概率为

概率论与数理统计 公式(全)
2012-6-1
1
指数分布
,
 
0, ,
 
 
 其中,则称随机变量X服从参数为的指数分布。
X的分布函数为
,
x<0。


 
 
 记住积分公式:
概率论与数理统计 公式(全)
2012-6-1
1
正态分布
设随机变量的密度函数为
, ,
其中、为常数,则称随机变量服从参数为、的正态分布或高斯(Gauss)分布,记为。
具有如下性质:
1° 的图形是关于对称的;
2° 当时,为最大值;
若,则的分布函数为
。。
参数、时的正态分布称为标准正态分布,记为,其密度函数记为
,,
分布函数为

是不可求积函数,其函数值,已编制成表可供查用。
Φ(-x)=1-Φ(x)且Φ(0)=。
如果~,则~。

(6)分位数
下分位表:;
上分位表:。
(7)函数分布
离散型
已知的分布列为
 ,
的分布列(互不相等)如下:

若有某些相等,则应将对应的相加作为的概率。
概率论与数理统计 公式(全)
2012-6-1
1
连续型
先利用X的概率密度fX(x)写出Y的分布函数FY(y)=P(g(X)≤y),再利用变上下限积分的求导公式求出fY(y)。
第三章 二维随机变量及其分布
概率论与数理统计 公式(全)
2012-6-1
1
(1)联合分布
离散型
如果二维随机向量(X,Y)的所有可能取值为至多可列个有序对(x,y),则称为离散型随机量。
设=(X,Y)的所有可能取值为,且事件{=

概率论与数理统计-公式(全) 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数52
  • 收藏数0 收藏
  • 顶次数0
  • 上传人艾米
  • 文件大小5.01 MB
  • 时间2022-04-10
最近更新