下载此文档

四点共圆基本性质及证明(共6页).doc


文档分类:中学教育 | 页数:约6页 举报非法文档有奖
1/6
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/6 下载此文档
文档列表 文档介绍
精选优质文档-----倾情为你奉上
精选优质文档-----倾情为你奉上
专心---专注---专业
专心---专注---专业
精选优质文档-----倾情为你奉上
专心---专注---专业
四点共圆
如果同一平面内的四个点在同一个,这四点共圆,于是PQ是一个有理数因为Ptolomy定理里的其它数都是整数。)引入一个新的点P增加了n个新的有理数距离,记这n个有理数的最大公分母为M。最后只需要把这个新的图扩大到原来的M倍即可。归纳法成立,故有这个命题。
反证法证明
现就“若平面上四点连成四边形的对角互补。那么这个四点共圆”证明如下(其它画个证明图如后)
已知:四边形ABCD中,∠A+∠C=180°
求证:四边形ABCD内接于一个圆(A,B,C,D四点共圆)
证明:用
过A,B,D作圆O,假设C不在圆O上,点C在圆外或圆内,
精选优质文档-----倾情为你奉上
精选优质文档-----倾情为你奉上
专心---专注---专业
专心---专注---专业
精选优质文档-----倾情为你奉上
专心---专注---专业
若点C在圆外,设BC交圆O于C’,连结DC’,根据圆内接四边形的性质得∠A+∠DC’B=180° ,
∵∠A+∠C=180° ∴∠DC’B=∠C
这与三角形外角定理矛盾,故C不可能在圆外。类似地可证C不可能在圆内。
∴C在圆O上,也即A,B,C,D四点共圆。
2证明方法
方法1
从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆周上,若能证明这一点,即可肯定这四点共圆.
方法2
把被证共圆的四个点连成共底边的两个三角形,且两三角形都在这底边的,若能证明其顶角相等(同所对的相等),从而即可肯定这四点共圆。
几何描述:四边形ABCD中,∠BAC=∠BDC,则ABCD四点共圆。
证明:过ABC作一个圆,明显D一定在圆上。若不在圆上,可设射线BD与圆的交点为D',那么∠BD'C=∠BAC=∠BDC,与外角定理矛盾。
方法3
把被证共圆的四点连成,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆。
证法见上
方法4
把被证共圆的四点两两连成相交的两条,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆(的逆定理);或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.(的逆定理)
精选优质文档-----倾情为你奉上
精选优质文档-----倾情为你奉上
专心---专注---专业
专心---专注---专业
精选优质文档-----倾情为你奉上
专心---专注---专业
上述两个定理统称为圆幂定理的逆定理,即ABCD四个点,分别连接AB和CD,它们(或它们的延长线)交点为P,若PAPB=PCPD,则ABCD四点共圆。
证明:连接AC,BD,∵PAPB=PCPD
∴PA/PC=PD/PB
∵∠APC=∠BPD
∴△APC∽△DPB
当P在AB,CD上时,由相似得∠A=∠D,且A和D在BC同侧。根据方法2可知ABCD四点共圆。
当P在AB,CD的延长线上时,由相似得∠PAC=∠D,根据方法3可知ABCD四点共圆。
方法5 证被证

四点共圆基本性质及证明(共6页) 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数6
  • 收藏数0 收藏
  • 顶次数0
  • 上传人ogthpsa
  • 文件大小177 KB
  • 时间2022-04-12