下载此文档

3.2 回归分析(2).doc


文档分类:高等教育 | 页数:约6页 举报非法文档有奖
1/6
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/6 下载此文档
文档列表 文档介绍
§ 回归分析(2)
教学目的
(1)通过实例理解相关系数的概念和性质,感受相关性检验的作用;
(2)能对相关系数进展显著性检验,并解决简单的回归分析问题;
(3)进一步理解回归的根本思想、方法及初步应用.
教学重点,难点
§ 回归分析(2)
教学目的
(1)通过实例理解相关系数的概念和性质,感受相关性检验的作用;
(2)能对相关系数进展显著性检验,并解决简单的回归分析问题;
(3)进一步理解回归的根本思想、方法及初步应用.
教学重点,难点
相关系数的性质和显著性检验的根本思想、操作步骤.
教学过程
一.问题情境
1.情境:下面是一组数据的散点图,假设求出相应的线性回归方程,求出的线性回归方程可以用作预测和估计吗?
2.问题:考虑、讨论:求得的线性回归方程是否有实际意义.
二.学生活动
对任意给定的样本数据,由计算公式都可以求出相应的线性回归方程,但求得的线性回归方程未必有实际意义.左图中的散点明显不在一条直线附近,不能进展线性拟合,求得的线性回归方程是没有实际意义的;右图中的散点根本上在一条直线附近,我们可以粗略地估计两个变量间有线性相关关系,但它们线性相关的程度如何,如何较为准确地刻画线性相关关系呢?
这就是上节课提到的问题①,即模型的合理性问题.为了答复这个问题,我们需要对变量和的线性相关性进展检验(简称相关性检验).
三.建构数学
1.相关系数的计算公式:
对于,随机取到的对数据,样本相关系数的计算公式为

2.相关系数的性质:
(1);
(2)越接近和1,,的线性相关程度越强;
(3)越接近和0,,的线性相关程度越弱.
可见,一条回归直线有多大的预测功能,和变量间的相关系数亲密相关.
3.对相关系数进展显著性检验的步骤:
相关系数的绝对值和1接近到什么程度才说明利用线性回归模型比较合理呢?这需要对相关系数进展显著性检验.对此,在统计上有明确的检验方法,根本步骤是:
(1)提出统计假设:变量,不具有线性相关关系;
(2)假设以的把握作出推断,那么可以根据和(是样本容量)在附录(教材P111)中查出一个的临界值(其中称为检验程度);
(3)计算样本相关系数;
(4)作出统计推断:假设,那么否认,说明有的把握认为变量和之间具有线性相关关系;假设,那么没有理由回绝,即就目前数据而言,没有充分理由认为变量和之间具有线性相关关系.
说明:1.对相关系数进展显著性检验,一般取检验程度,即可靠程度为.
2.这里的指的是线性相关系数,的绝对值很小,只是说明线性相关程度低,不一定不相关,可能是非线性相关的某种关系.
3.这里的是对抽样数据而言的.有时即使,两者也不一定是线性相关的.故在统计分析时,不能就数据论数据,要结合实际情况进展合理解释.
4.对于上节课的例1,可按下面的过程进展检验:
(1)作统计假设:和不具有线性相关关系;
(2)由检验程度和在附录中查得;
(3)根据公式得相关系数;
(4)因为,即,所以有﹪的把握认为和
之间具有线性相关关系,线性回归方程为是有意义的.
四.数学运用
1.例题:
例1.下表是随机抽取的对母女的身高数据,试根据这些数据讨论和之间的关系.
母亲身高

3.2 回归分析(2) 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数6
  • 收藏数0 收藏
  • 顶次数0
  • 上传人whetyo
  • 文件大小235 KB
  • 时间2022-04-16
最近更新