下载此文档

高中数学立体几何解题技巧.docx


文档分类:中学教育 | 页数:约4页 举报非法文档有奖
1/4
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/4 下载此文档
文档列表 文档介绍
1
高中数学立体几何解题技巧
很多高中生认为立体几何很难,但只要打好基础,立体几何将会变得很简单。学好立体几何最关键的就是建立起立体模型,把立体转换为平面,运用平面学问来解决问题,立体几何在高考中确定会消失一道大题,1
高中数学立体几何解题技巧
很多高中生认为立体几何很难,但只要打好基础,立体几何将会变得很简单。学好立体几何最关键的就是建立起立体模型,把立体转换为平面,运用平面学问来解决问题,立体几何在高考中确定会消失一道大题,所以学好立体是特别关键的。下面是高三网我整理的高中数学立体几何解题技巧,供参考。

高中数学立体几何解题技巧
、垂直位置关系的论证的策略:
(1)由已知想性质,由求证想判定,即分析法与综合法相结合查找证题思路。
(2)利用题设条件的性质适当添加帮助线(或面)是解题的常用方法之一。
(3)三垂线定理及其逆定理在高考题中使用的频率最高,在证明线线垂直时应优先考虑。
:
主要步骤:一作、二证、三算;若用向量,那就是一证、二算。
(1)两条异面直线所成的角①平移法:②补形法:③向量法:
(2)直线和平面所成的角
①作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算。
3
②用公式计算.
(3)二面角
①平面角的作法:(i)定义法;(ii)三垂线定理及其逆定理法;(iii)垂面法。
②平面角的计算法:
(i)找到平面角,然后在三角形中计算(解三角形)或用向量计算;(ii)射影面积法;(iii)向量夹角公式.
点击查看:数学答题技巧及常用解题方法
:
(1)求点到直线的距离:常常应用三垂线定理作出点到直线的垂线,然后在相关的三角形中求解,也可以借助于面积相等求出点到直线的距离。
(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能直接作出公垂线的状况下,可转化为线面距离求解(这种状况高考不做要求)。
(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体积法”直接求距离;有时直接利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距离”。求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。

高中数学立体几何解题技巧 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
最近更新