下载此文档

控制系统的频率法分析第四节奈魁斯特稳定判据.ppt


文档分类:通信/电子 | 页数:约73页 举报非法文档有奖
1/73
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/73 下载此文档
文档列表 文档介绍
第四节奈奎斯特稳定判据
1
一、辐角定理:
对于一个复变函数
式中-zi(i=1,2,…,m)为F(s)的零点, -pj(j=1,2,…,n)为F(s)的极点。
[柯西辐角原理]:S平面上不通过F(s)任何奇异点的封闭曲线CS包围S平面上F(s)的Z个零点和P个极点。当s以顺时针方向沿封闭曲线CS移动一周时,在F(s)平面上映射的封闭曲线CF将以顺时针方向绕原点旋转N圈。N,Z,P的关系为:N=Z-P。
示意图
2
若N为正,表示CF顺时针运动,包围原点;
若N为0,表示CF顺时针运动,不包围原点;
若N为负,表示CF逆时针运动,包围原点。
函数F(s)是复变量s的单值函数,s可以在整个S平面上变化,对于其上的每一点,除有限(n)个极点外,函数F(s)都有唯一的一个值与之对应。
对于一个复变函数
[例]设:
3
F(s)的值域构成的复平面称为F(s)平面。其中S平面上的全部零点都映射到F(s)平面上的原点;S平面上的极点映射到F(s)平面上时都变成了无限远点。除了S平面上的零、极点之外的普通点,映射到F(s)平面上是除原点之外的有限点。
注意,虽然函数F(s)从S平面到F(s)平面的映射是一一对应的,然而逆过程往往并非如此。例如已知
这个函数在有限的S平面上除S=0,-1, - 2以外均解析,除此三点外,S平面上的每一个S值在F(s)平面只有一个对应点,但是F(s)平面上的每一个点在S平面上却有三个映射点。最简单的说明方式就是将方程改写成
4
现考虑S平面上一点s1映射到F(s)平面上的点F(s1)可以用一个向量来表示,即当
向量的幅值为
向量的相角为
5
Re
Im
Re
Im
S平面
F(s)平面
6
当S平面上动点s从s1经过某曲线CS到达s2,映射到F(s)平面上也将是一段曲线CF ,该曲线完全由F(s)表达式和s平面上的曲线CS决定。若只考虑动点s从s1到达s2相角的变化量,则有

7
[例]设: ,当s平面上的动点沿平行于虚轴的直线,从(-1,j1)到(-1,j0) ,映射到F(s)平面上的点将沿某曲线从(0,-j1)到(-1,-j0) ,相角的变化为:
8
现考虑S平面上既不经过零点也不经过极点的一条封闭曲线CS 。当变点s沿CS顺时针方向绕行一周,连续取值时,则在F(s)平面上也映射出一条封闭曲线CF 。在S平面上,用阴影线表示的区域,称为CS的内域。由于我们规定沿顺时针方向绕行,所以内域始终处于行进方向的右侧。在F(s)平面上,由于CS映射而得到的封闭曲线CF的形状及位置,严格地决定于CS 。
示意图
9
在这种映射关系中,有一点是十分重要的,即:不需知道围线CS的确切形状和位置,只要知道它的内域所包含的零点和极点的数目,就可以预知围线CF是否包围坐标原点和包围原点多少次;反过来,根据已给的围线CF是否包围原点和包围原点的次数,也可以推测出围线CS的内域中有关零、极点数的信息。
10

控制系统的频率法分析第四节奈魁斯特稳定判据 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数73
  • 收藏数0 收藏
  • 顶次数0
  • 上传人小猪猪
  • 文件大小0 KB
  • 时间2012-01-12
最近更新