下载此文档

基于改进Faster R-CNN的钢板表面缺陷检测 李玉.pdf


文档分类:行业资料 | 页数:约4页 举报非法文档有奖
1/4
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/4 下载此文档
文档列表 文档介绍
第 5 期 组合机床与自动化加工技术 No. 5
2022 年 5 ,
Abstract Aiming at the difficulty in detecting surface defects of steel plates an improved Faster R-CNN

model was used to detect 8 kinds of surface defects of two types of steel plates. Firstly the data were en-

hanced to get the data set of steel plate surface defects. Secondly three different feature extraction net-
, , , ,
works VGG16 MobileNet-V2 and ResNet-50 were used to train and test the model on the data set and the
model accuracy was compared to determine the optimal feature extraction network under the task of this pa-
per. Then cluster analysis of the defect data using the K-means algorithm to customize a more suitable an-

chor scheme for surface defects on steel plates. Finally the feature pyramid network is added to the back-
bone network to further

基于改进Faster R-CNN的钢板表面缺陷检测 李玉 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数4
  • 收藏数0 收藏
  • 顶次数0
  • 上传人巧姐
  • 文件大小292 KB
  • 时间2022-06-01
最近更新