下载此文档

高二数学必修必拿下知识点总结.docx


文档分类:中学教育 | 页数:约13页 举报非法文档有奖
1/13
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/13 下载此文档
文档列表 文档介绍
2
高二数学必修必拿下知识点总结
在高二阶段,学习的任务是打好基础,把各学科的基础学问和技能把握清晰,在这个目标达到后,由余力的同学可以适当提高层次,多做些力量题,以提高自己的分析问题、解决问题和探究问题的力量。下面是我给大数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。

设函数yf(x)在x0及其四周有定义,假如对x0四周的全部的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的微小值(或极大值)。
可导函数的极值,可通过讨论函数的单调性求得,基本步骤是:
(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化状况:
(4)检查f(x)的符号并由表格推断极值。

假如函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值。函数在定义域内的极值不肯定,但在定义域内的最值是的。
求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;
6
(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值。

(1)不等式恒成立问题(肯定不等式问题)可考虑值域。
f(x)(xA)的值域是[a,b]时,
不等式f(x)0恒成立的充要条件是f(x)max0,即b0;
不等式f(x)0恒成立的充要条件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)时,
不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。
(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。

实际生活求解(小)值问题,,肯定要留意,极值点的单峰函数,极值点就是最值点,在解题时要加以说明。
高二数学必修必拿下学问点总结3
空间两条直线只有三种位置关系:平行、相交、异面
按是否共面可分为两类:
(1)共面:平行、相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
7
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)
两异面直线间距离:公垂线段(有且只有一条)
若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面
直线和平面的位置关系:
直线和平面只有三种位置关系:在平面内、与平(面相)交、与平面平行
①直线在平面内——有很多个公共点
②直线和平面相交——有且只有一个公共点
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
空间向量法(找平面的法向量)
规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角
由此得直线和平面所成角的取值范围为[0°,90°]
最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角
三垂线定理及逆定理:假如平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直
7
直线和平面垂直
直线和平面垂直的定义:假如一条直线a和一个平面内的任意一条直线都垂直,,平面叫做直线a的垂面。
直线与平面垂直的判定定理:假如一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:假如两条直线同垂直于一个平面,那么这两条直线平行。③直线和平面平行——没有公共点
直线和平面平行的定义:假如一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
直线和

高二数学必修必拿下知识点总结 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数13
  • 收藏数0 收藏
  • 顶次数0
  • 上传人XUJIANMIAO
  • 文件大小18 KB
  • 时间2022-06-02
最近更新