下载此文档

2021-2022学年宁夏回族自治区银川市兴庆区银川一中高考冲刺押题(最后一卷)数学试卷含解析.doc


文档分类:中学教育 | 页数:约17页 举报非法文档有奖
1/17
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/17 下载此文档
文档列表 文档介绍
2022年高考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.B
【解析】
由两直线垂直求得则或,再根据充要条件的判定方法,即可求解.
【详解】
由题意,“直线与直线垂直”
则,解得或,
所以“直线与直线垂直”是“”的必要不充分条件,故选B.
【点睛】
本题主要考查了两直线的位置关系,及必要不充分条件的判定,其中解答中利用两直线的位置关系求得的值,同时熟记充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.
4.C
【解析】
依次递推求出得解.
【详解】
n=1时,,
n=2时,,
n=3时,,
n=4时,,
n=5时,.
故选:C
【点睛】
本题主要考查递推公式的应用,意在考查学生对这些知识的理解掌握水平.
5.D
【解析】
由成等差数列得,利用等比数列的通项公式展开即可得到公比q的方程.
【详解】
由题意,∴2aq2=aq+a,∴2q2=q+1,∴q=1或q=
故选:D.
【点睛】
本题考查等差等比数列的综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练.
6.C
【解析】
将,分别用和的形式表示,然后求解出和的值即可表示.
【详解】
设等差数列的首项为,公差为,
则由,,得解得,,
所以.故选C.
【点睛】
本题考查等差数列的基本量的求解,,可通过构建和的方程组求通项公式.
7.D
【解析】
设出的坐标为,依据题目条件,求出点的轨迹方程,
写出点的参数方程,则,根据余弦函数自身的范围,可求得结果.
【详解】
设 ,则
∵,


∴为点的轨迹方程
∴点的参数方程为(为参数)
则由向量的坐标表达式有:
又∵

故选:D
【点睛】
考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,:①直接法;②定义法;③相关点法;④参数法;⑤待定系数法
8.A
【解析】
阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.
【详解】
因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.
故选:A.
【点睛】
本题考查实际背景下古典概型的计算,:.
9.C
【解析】
分析:先求导,再对a分类讨论求函数的单调区间,再画图分析转化对区间内的任意实数,都有,得到关于a的不等式组,再解不等式组得到实数a的取值范围.
详解:由题得.
当a<1时,,所以函数f(x)在单调递减,
因为对区间内的任意实数,都有,
所以,
所以
故a≥1,与a<1矛盾,故a<1矛盾.
当1≤a<e时,函数f(x)在[0,lna]单调递增,在(lna,1]单调递减.
所以
因为对区间内的任意实数,都有,
所以,
所以

令,
所以
所以函数g(a)在(1,e)上单调递减,
所以,
所以当1≤a<e时,满足题意.
当a时,函数f(x)在(0,1)单调递增,
因为对区间内的任意实数,都有,
所以,
故1+1,
所以

综上所述,a∈.
故选C.
点睛:本题的难点在于“对区间内的任意实数,都有”,所以我们要联想到利用函数的性质(单调性、奇偶性、周期性、对称性、最值、极值等),完成了数学问题的等价转化,找到了问题的突破口.
10.C
【解析】
利用复数的三角形式的乘法运算法则即可得出.
【详解】
z1z2=(cos23°+isin23°)•(cos37°+isin37°)=cos60°+isin60°=.
故答案为C.
【点睛】
熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.
11.D
【解析】
利用辅助角公式化简的解析式,再根据正弦函数的最值,求得在函数取得最小值时的值.
【详解】
解:,其中,,,

2021-2022学年宁夏回族自治区银川市兴庆区银川一中高考冲刺押题(最后一卷)数学试卷含解析 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数17
  • 收藏数0 收藏
  • 顶次数0
  • 上传人421989820
  • 文件大小1.60 MB
  • 时间2022-06-06
最近更新