随机规划与随机控制ALM模型-名词详解
随机规划与随机控制ALM模型(Stochastic Programming or S(Carino et al)等创建的Russell-Yasuda Kasai模型。Russell-Yasuda Kasai模型在日本Yasuda保险公司(Yasuda公司)进行尝试性运用,使该公司在满足账面价值规则及条例管制的同时,能遵循公司的经济价值,而且,该模型还可以对与公司业务环境相关联的事件结果来进行资产配置和负债管理决策,消除未来资产负债价值的不确定性。在使用这一模型的两年内,即1991年和1992年,按这一模型设计的投资策略,使Yasuda公司获得了7900万美元的额外收益。
(二)随机控制方法以状态的连续统(continuum)表示不确定状态,连续统的特征以少量服从联合马尔可夫过程的状态向量描述 。Brennan et 、股票和现金方面投资的投资组合问题,假定有三个状态变量影响期望资产回报的时间变化,这三个变量即短期利率(r)、长期债券利息率(l)及股票资产组合分红收益(δ)。该文假定投资者没有负债,假定负债的期望增长率依赖于状态变量的水平,将负债包括进去相对来说很简单直接。如前所述,状态向量服从联合马尔可夫过程,该过程假设为以下形式:
dr = μrdt + σrdzr
dl = μldt + σldzl
dδ − μδdt + σδdzδ
股票与债券由下式给定:
其中dS/S为股票组合的回报率,dB/B为债券的瞬时总回报。参数μiσi(i = r,l,δ,S)为状态变量r,l,δ的at most函数(at most function),dzi为维纳(Wiener)过程的增量。维纳过程增量间的相关系数为ρrl等。
定义W为财富,其效用假定为等弹性形式,即对于τ时r<的情况下,;定义x为组合中股票的比例,y为康索尔债券的比例,Bellman方程为:
maxx,yE[dV] = 0
解其一阶条件,可以找到最优控制解x * (r,l,δ,τ)和y * (r,l,δ,τ),该过程可以由经验数据估计,投资者的最优控制问题可以通过参数值的估计得到解决。
Brennan和Schwartz[1]通过允许投资者在短期利率期货如股票、债券或现金上采取长线或短线的情况扩展了这个模型,通过分析,他们认为这样的投资机会可以显著改善期望效用。其他一些研究人员利用这个理论讨论了大学捐赠基金的优化投资策略问题等[2]。
随机规划与随机控制ALM模型的评析
随机规划ALM模型实际上是一类模型,它提供了模拟一般目标的方法。这些目标可以包括交易费用、税费、法律政策限制等方面的要求。由于考虑了众多因素,模型的变量越来越多,从而导致大量的优化问题,其计算成本相当高,因而实用性令人怀疑。我们以“机会限制模型(Chance Constrained Model)”为例。
机会限制模型最早由Charnes和Kirby提出 。在他们的论文里,将未来的存款与贷款支出看作是联合分布的随机变量,以资本充足率公式作为机会限制。该模型的缺点是,违背约
随机规划与随机控制ALM模型-详解 来自淘豆网m.daumloan.com转载请标明出处.