2
高三数学必考知识点梳理
(总结)是指社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而确定成果,得到(阅历),找出差距,得出教训和一些规律性熟悉的一种书面材料,2
高三数学必考知识点梳理
(总结)是指社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而确定成果,得到(阅历),找出差距,得出教训和一些规律性熟悉的一种书面材料,下面是我给大家带来的(高三数学)必考学问点梳理,以供大家参考!
高三数学必考学问点梳理
假如一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的`公差,通常用字母d表示.
若等差数列{an}的首项是a1,公差是d,则其通项公式为an=a1+(n-1)d.
假如A=(a+b)/2,那么A叫做a与b的等差中项.
(1)通项公式的推广:an=am+(n-m)d(n,m∈N_.
(2)若{an}为等差数列,且m+n=p+q,
则am+an=ap+aq(m,n,p,q∈N_.
(3)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N_是公差为md的等差数列.
2
(4)数列Sm,S2m-Sm,S3m-S2m,…也是等差数列.
(5)S2n-1=(2n-1)an.
(6)若n为偶数,则S偶-S奇=nd/2;
若n为奇数,则S奇-S偶=a中(中间项).
留意:
一个推导
利用倒序相加法推导等差数列的前n项和公式:
Sn=a1+a2+a3+…+an,①
Sn=an+an-1+…+a1,②
①+②得:Sn=n(a1+an)/2
两个技巧
已知三个或四个数组成等差数列的一类问题,要擅长设元.
(1)若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,….
(2)若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元.
四种(方法)
等差数列的推断方法
(1)定义法:对于n≥2的任意自然数,验证an-an-1为同一常数;
(2)等差中项法:验证2an-1=an+an-2(n≥3,n∈N_都成立;
(3)通项公式法:验证an=pn+q;
3
(4)前n项和公式法:验证Sn=An2+Bn.
注:后两种方法只能用来推断是否为等差数列,而不能用来证明等差数列.
高三班级下册数学学问点归纳
(1)若f(x)是偶函数,那么f(x)=f(-x);
(2)若f(x)是奇函数,0在其定
高三数学必考知识点梳理 来自淘豆网m.daumloan.com转载请标明出处.