下面就正弦定理的教学做一个简单的分析。
1、创设一个现实问题情境作为提出问题的背景; .
2、启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决过渡性问题时需要使用正弦定理,借此引下面就正弦定理的教学做一个简单的分析。
1、创设一个现实问题情境作为提出问题的背景; .
2、启发、引导学生提出自己关心的现实问题,逐步将现实问题转化、抽象成过渡性数学问题,解决过渡性问题时需要使用正弦定理,借此引发学生的认知冲突,揭示解斜三角形的必要性,并使学生产生进一步探索解决问题的动机。然后引导学生抓住问题的数学实质,将过渡性问题引伸成一般的数学问题:已知三角形的两条边和一边的对角,求另一边
的对角及第三边。解决这两个问题需要先回答目标问题:在三角形中,两边与它们的对角之间有怎样的关系?
3、为了解决提出的目标问题,引导学生回到他们所熟悉的直角三角形中,得出目标问题在直角三角形中的解,从而形成猜想,然后引导学生对猜想进行验证。
二、教学过程 .
1、设置情境
利用投影展示:一条河的两岸平行,河宽d=1km,因上游突发洪水,在洪峰到来之前,急需将码头A处囤积的重要物资及人员用船转运到正对岸的码头B处或其下游1km的码头C处。已知船在静水中的速度I v1 I=5l(111/h,水流速度I v2 l=3km/h。
2
、提出问题
师:为了确定转运方案,请同学们设身处地地考虑一下有关的问题,将各自的问题经小组(前后4人为一小组)汇总整理后交给我。
待各小组将题纸交给老师后,老师筛选几张有代表性的题纸通过投影向全班展示,经大家归纳整理后得到如下的5个问题:
(1)船应开往B处还是C处?
(2)船从A开到B、C分别需要多少时间?
(3)船从A到B、C的距离分别是多少?
(4)船从A到B、C时的速度大小分别是多少?
(5)船应向什么方向开,才能保证沿直线到达B、C?
师:大家讨论一下,应该怎样解决上述问题?
大家经过讨论达成如下共识:要回答问题(1),需要解决问题(2),要解决问题(2),需要先解决问题(3)和(4),问题(3)用直角三角形知识可解,所以重点是解决问题(4),问题(4)与问题(5)是两个相关问题,因此,解决上述问题的关键是解决问题(4)和(5)。
师:请同学们根据平行四边形法则,先在练习本上做出与问题对应的示意图,明确已知什么,要求什么,怎样求解。
生:船从A开往B的情况如图2,根据平行四边形的性质及解直角三角形的知识,可求得船在河水中的速度大小I v l及v1与v2的夹角o:
生:船从A开往C的情况, | AD |=,|v1|=5, |DE|=|AF|=|v2|=3,易求得么AED=么EAF=450,还需求0及v。我不知道怎样解这两个问题,因为以前从未解过类似的问题。
师:请大家想一下,这两个问题的数学实质是什么?
部分学生:在三角形中,已知两边和其中一边的对角,求另一边的对角和第三边。
师:请大家讨论一下,如何解决这两个问题?
生:在已知条件下,若能知道三角形中
正弦定理 来自淘豆网m.daumloan.com转载请标明出处.