下载此文档

例1 指出下列各点所在的象限或坐标轴.doc


文档分类:医学/心理学 | 页数:约14页 举报非法文档有奖
1/14
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/14 下载此文档
文档列表 文档介绍
例1 ( -1, - ),B(3, -4),C(- 13, 5),D(7,9),E(-π,0),F(0, - 23),G( ,0), H(0, 10),K(0,0). 解:方法 1 :画一个平面直角坐标系, 先大致地描出各点, 再作出判断. 方法 2 :可用下表提供的规律直接判断. A 在第三象限, B 在第四象限, C 在第二象限, D 在第一象限, E在 x 轴负半轴上, F在y 轴负半轴上, G在x 轴正半轴上, H在y 轴正半轴上, K 如图是一台雷达探测相关目标得到的结果, 若记图中目标 A的位置为(2, 90°), 则其余各目标的位置分别是多少? 解:由图可知, A(2, 90°)表示A 在从里往外第二层,并在 90° 在从里往外第 5层, 并在 30°的方向上,故B 的坐标为B(5, 30°). 同理:C(4, 240 °),D(3, 300 °),E(6, 120 °),F(4,0°), G(4, 180 °). 例3 如图,直角坐标系中, △ ABC 的顶点都在网格点上. 其中, A 点坐标为(2, -1),则△ ABC 的面积为_______ 平方单位. 分析:B(4,3),C(1,2) .S △ ABC =S 长方形 MNBP -S △ MAC -S △ NAB -S △ PBC =3 × 4- 12×1× 3- 12×2× 4- 12×1× 3=5. 也可以这样求:S △ ABC =S 梯形 MNBC -S △ MAC -S △ ABN = 12×( 3+4 )× 3- 12×1× 3- 12×2× 4=5. 例4 已知正方形 ABCD 的边长为4 ,且各边分别平行于坐标轴,在如图所示的三个平面直角坐标系中, : 对于同一个点, 平面直角坐标系建得不同,它的坐标就不一样.(1)A(0,0),B(4,0),C (4,4),D(0,4);(2)A(2,1), B(6,1),C(6,5),D(2,5);(3) A( -2, -2),B(2, -2),C(2,2), D( -2,2). 例5(1) 在平面直角坐标系内, 点A( m,1-m ) 一定不在_______ 象限, B( a+1,a )一定不在_______ 象限.(2 )点 P( x,y )在平面直角坐标系内,若 xy>0,则P在________ , 若 xy=0 ,则P在________ ,若x 2 +y 2 =0 , 则点 P在______. 分析:(1 )对于点 A( m,1-m ), 若m>0,则 1-m 可以为正, 可以为 0, 也可以为负, 此时,A在y 轴的右侧, 若 m=0 ,A(0,1),在y 轴正半轴上, 若m<0,则A 的坐标特征为(-,+), 在第二象限,可见 A( m,1-m )一定不在第三象限;对于 B( a+1,a ) ,因为 a+1 > a, 而第二象限的坐标特征是(-,+), 始终是横坐标的值小于纵坐标的值, 所以 B( a+1,a ) 不可能在第二象限.(2 )若 xy>0 ,则 x,y 同号,所以A( x,y )在第一或第三象限; 若 xy=0 ,有三层意思: ①x≠ 0,y=0; ② x=0 ,y≠0;③ x=0,y=0. 所以 P( x,y ) 在坐标轴上;若 x2+y2=0 ,则 x=0,y=0 , 所以 P( x,y )即P(0,0) ( -5,m),B(n,3) 是不同的两点.(1 )当 m_______ , n________ 时, AB ∥x 轴; (2 )当 m_______ , n________ 时, AB ∥y 轴; (3 )当 m_______ , n________ 时, A,B 在第一、三象限角平分线上; (4 )当 m_______ , n________ 时, A,B 在第二、四象限角平分线上. 分析:(1 )若 AB ∥x 轴,则 A, B 的纵坐标相同,横坐标不同,所以 m=3,n ≠-5; (2 )若 AB ∥y 轴,则 A,B的横坐标相同, 纵坐标不同, 所以 m≠ 3, n=-5 ; (3)A,B 在第一、三象限的角平分线上,则 A,B 两点的横纵坐标均相同,故 m=-5,n=3; (4)A,B 在第二、四象限的角平分线上,则 A,B 两点的横纵坐标均互为相反数,故 m=5,n=-3. 【教学说明】本题揭示如下规律:已知 A( a,b ),B( c,d )是不同两点,则 AB ∥x轴a≠ c,b=d ; AB ∥y轴 a=c,b ≠d; A,B 在第一、三象限平分线上 a=b,c=d ; A,B 在第二、四象限平分线上 a=-b,c=-d. 例7 已知点

例1 指出下列各点所在的象限或坐标轴 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数14
  • 收藏数0 收藏
  • 顶次数0
  • 上传人xxj165868
  • 文件大小131 KB
  • 时间2017-05-09
最近更新