新版初二数学知识点
函数及其相关概念
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,假如对于x的每一个值程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
:ax+b=0(x是未知数,a、b是已知数,且a≠0).
:ax=b(x是未知数,a、b是已知数,且a≠0).
:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).
:
(1)读题分析法:…………多用于和,差,倍,分问题
认真读题,找出表示相等关系的关键字,例如:大,小,多,少,是,共,合,为,完成,增加,削减,配套-----,利用这些关键字列出文字等式,并且据题意设出未知数,最终利用题目中的量与量的关系填入代数式,得到方程.
(2)画图分析法:…………多用于行程问题
利用图形分析数学问题是数形结合思想在数学中的表达,认真读题,依照题意画出有关图形,使图形各局部具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最终利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的根底。
八年级下册数学复习资料
【零指数幂与负整指数幂】
重点:幂的性质(指数为全体整数)并会用于计算以及用科学记数法表示一些肯定值较小的数
难点:理解和应用整数指数幂的性质。
一、复习练习:
1、;=;=,=,=。
2、不用计算器计算:÷(—2)2—2-1+
二、指数的范围扩大到了全体整数.
1、探究
现在,我们已经引进了零指数幂和负整数幂,,在“幂的运算”中所学的幂的性质是否还成立呢?与同学们争论并沟通一下,推断以下式子是否成立.
(1);(2)(a?b)-3=a-3b-3;(3)(a-3)2=a(-3)×2
2、概括:指数的范围已经扩大到了全体整数后,幂的运算法则仍旧成立。
3、例1计算(2mn2)-3(mn-2)-5并且把结果化为只含有正整数指数幂的形式。
解:原式=2-3m-3n-6×m-5n10=m-8n4=
4练习:计算以下各式,并且把结果化为只含有正整数指数幂的形式:
(1)(a-3)2(ab2)-3;(2)(2mn2)-2(m-2n-1)-3.
三、科学记数法
1、回忆:在之前的学数法表示一些肯定值较大的数,即利用10
新版初二数学知识点 来自淘豆网m.daumloan.com转载请标明出处.