证明菱形判定方法
中点四边形:依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的外形怎样转变,中点四边形的外形始终是平行四边形。
菱形的中点四边形是矩形(对角线相互垂直的四边形的中点四边形定为菱形,对
证明菱形判定方法
中点四边形:依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的外形怎样转变,中点四边形的外形始终是平行四边形。
菱形的中点四边形是矩形(对角线相互垂直的四边形的中点四边形定为菱形,对角线相等的四边形的中点四边形定为矩形。)
菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特别的平行四边形,特别之处就是“有一组邻边相等”,因而就增加了一些特别的性质和不同于平行四边形的判定方法。菱形的面积计算:。(只要是对角线相互垂直的四边形都可用);由把菱形分解成2个三角形,化简得出;;,一个夹角为θ,则面积公式是:S=a^2·sinθ。
有一组邻边相等的平行四边形是菱形。
。
3. 对角线相互垂直的平行四边形是菱形。
证明菱形判定定理
证明:
∵AB=CD,BC=AD,
∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).
又∵AB=BC,
∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形).
2、对角线相互垂直的平行四边形是菱形。
证明:
∵ 四边形ABCD是平行四边形,
∴ OA=OC(平行四边形的对角线相互平分)。
又∵AC⊥BD,
∴ BD所在直线是线段AC的垂直平分线,
∴ AB=BC,
∴ 四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形)。
3、有一组邻边相等的平行四边形是菱形。
RF是三角形ABD的中位线,于是RF∥AD,
同理:GH∥AD,RH∥BE,FG∥BE,所以有RF∥GH,RH∥FG,
所以四边形RFGH是平行四边形;
证明菱形判定方法 来自淘豆网m.daumloan.com转载请标明出处.