表征不同尺度的信号特征的检测系统
为了更加清楚地分析和研究实际工程信号的有用信息,对信号进行预处理是至关重要的。例如,对于环境的监测,其中对空气成分的检测已经成为必不可少的环节,其方法是将空气中的某一成分(例如丁烯)进行特征的提取,提取的ge that the analysis of the signal can be arbitrary amplification translation and its characteristics were extracted. For complex signal wavelet transform, multi-resolution analysis, in the field of signal image analysis has occupies a quite important position.
已有的科研成果表明,物质的荧光光谱取决于物质的原子分子结构,所以不同的物质具有不同的荧光光谱。非线性荧光光谱是利用大功率超短激光脉冲和气体的非线性作用得到的;对于这种非线性荧光光谱的研究,主要集中在形成原理、光谱强度等方面。
①由于采用传统的光谱分析方法分析该光谱存在很大的困难,所以这方面的研究还处于刚刚起步的状态。笔者发现,由此得到的非线性荧光光谱与超短脉冲激光器的波长以及强度无关,只与气体的分子原子结构有关;对于混合气体,则与其组成成分(包括浓度的不同)有关,因而可以用来进行混合气体成分识别。含有不同成分的混合气体的非线性荧光光谱虽然不同,但不同的气体在同一波段上可能有很大成分的交叉重叠,因此很难像吸收光谱那样找出每种气体特有的非线性荧光光谱,然后利用最小二乘法进行拟合而加以识别。神经 网络 对于不能精确识别或用数学公式近似加以描述的模式识别具有非常好的识别能力和推广性。对此,已有不少关于气体传感器( 电子 鼻) 联合神经网络识别分析气体组成成分的报道,这些方法的一个共同特点,就是必须对检测的气体进行取样,因而不能实时地检测混合气体的组成成分。本文正是基于这种原理,提出海吉布利用混合气体的非线性荧光光谱联合神经网络模式识别的方法,来实时检测识别混合气体成分的新方法。
Of the existing research results show that the substance of fluorescence spectrum depends on the molecular structure of the atoms, so different material have different fluorescence spectrum. Nonlinear fluorescence spectrum is the use of high power ultra-short pulse laser and nonlinear effect of gas; For the nonlinear fluorescence spectrum of research, mainly in the form principle, spectral intensity, etc. (1) due to the traditional spectral analysis methods to a
表征不同尺度的信号特征的检测系统 来自淘豆网m.daumloan.com转载请标明出处.