高二年级数学必修五知识点
一、根底学问
(1)常用规律用语:四种命题(原、逆、否、逆否)及其相互关系;充分条件与必要条件;简洁的规律联结词(或、且、非);全称量词与存在性量词,全称命
高二年级数学必修五知识点
一、根底学问
(1)常用规律用语:四种命题(原、逆、否、逆否)及其相互关系;充分条件与必要条件;简洁的规律联结词(或、且、非);全称量词与存在性量词,全称命题与特称命题的否认.
(2)圆锥曲线:曲线与方程;求轨迹的常用步骤;椭圆的定义及其标准方程、椭圆的简洁几何性质(留意离心率与外形的关系);双曲线的定义及其标准方程、双曲线的简洁几何性质(留意双曲线的渐近线)、等轴双曲线与共轭双曲线;抛物线的定义及其标准方程;抛物线的简洁几何性质;直线与圆锥曲线的常用公式(弦长公式、两根差公式).
圆锥曲线的几何性质的常用拓展还有:焦半径公式、椭圆与双曲线的焦准定义、椭圆与双曲线的“垂径定理”、焦点三角形面积公式、圆锥曲线的光学性质等等.
(3)空间向量与立体几何:空间向量的概念、表示与运算(加法、减法、数乘、数量积);空间向量根本定理、空间向量运算的坐标表示;平面的法向量、用空间向量计算空间的角与距离的方法.
二、重难点与易错点
重难点与易错点局部协作必考题型使用,做完必考题型后会对重难点与易错局部局部有更深入的理解.
(1)区分逆命题与命题的否认;
(2)理解充分条件与必要条件;
(3)椭圆、双曲线与抛物线的定义;
(4)椭圆与双曲线的几何性质,特殊是离心率问题;
(5)直线与圆锥曲线的位置关系问题;
(6)直线与圆锥曲线中的弦长与面积问题;
(7)直线与圆锥曲线问题中的参数求解与性质证明;
(8)轨迹与轨迹求法;
(9)运用空间向量求空间中的角度与距离;
(10)立体几何中的动态问题探究.
(1)定义:
对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点。
(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:
方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点。
(3)函数零点的判定(零点存在性定理):
假如函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)0)的图象与零点的关系
三二分法
对于在区间[a,b]上连
高二年级数学必修五知识点 来自淘豆网m.daumloan.com转载请标明出处.