基于小波变换的图像去噪
姓名:兰昆伟
学号:38022115
指导老师:赵巍
专业:电子信息工程
课题背景及意义
人类传递信息的主要媒介是语音和图像。据统计,在人类接收的信息中,听觉信息占20%,视觉信息占60%…。其中图像信息以其信息量大,传输速度快,作用距离远等一系列优点成为人类获取信息的重要来源和利用信息的重要手段。一幅图像所包含的信息量和直观性是声音、文字所无法比拟的。然而,图像在生成和传输的过程中会受到各种噪声的干扰,图像的质量会受到损害,这对图像后续更高层次的处理是十分不利的。因此,在图像的预处理阶段,很有必要对图像进行去噪,这样可以提高图像的信噪比,突出图像的期望特征。
图像噪声的主要来源有三个方面:一是敏感元器件内部产生的高斯噪声。这是由于器件中的电子随机热运动而造成的电子噪声,这类噪声很早就被人们成功的建模并研究。一般用零均值高斯白噪声来表征。二是光电转换过程中的泊松噪声。这类噪声是由光的统计本质和图像传感器中光电转换过程引起的,在弱光情况下,影响更为严重。常用只有泊松密度分布的随机变量作为这类噪声的模型。三是感光过程中产生的颗粒噪声。在显微镜下检查可发现,照片上光滑细致的影调,在微观上呈现的是随机的颗
粒性质。对于多数应用,颗粒噪声用高斯过程(白噪声)作为有效模型。
小波变换具有良好的时频局部化性质,为解决这一问题提供了良好的工具。随着小波理论的不断发展完善,其良好的时频特性使其在图像去噪领域中得到了广泛的应用。理论和实验证明,信号与噪声在小波域有着不同的传播特性,信号的小波变换模极大值将随尺度的增大而增大或不变,而噪声的小波变换模极大值将随尺度的增大而减小,充分利用这些特点,在小波变换域中能十分有效地把信号和噪声区别开来。因此,基于小波变换的去噪方法能够在噪声剔除的同时保护图像信号边缘,具有很好的应用前景和极大的发展潜力。
发展历程及现状
为克服傅立叶分析不能同时作时频局部化分析的缺点,1964年,Gabor提出了窗
口傅立叶变换,1910年Haar提出最早的Haar小波规范正交基,开辟了通往小波的道路。由于Haar小波不连续,因此当时并没有引起人们的足够重视,当时也没有出现“小波"一词。1994年,Xu等人提出了一种基于空域相关性的噪声去除方法啪1,即根据信号与噪声的小波变换系数在相邻尺度之间的相关性进行滤波。1998年Dowinc和Silvcrman提出了多小波的通用阈值公式,把平移不变小波去噪推广到多小波的情形。Nowak等人1999年提出了针对光子图像系统的小波域滤波算法啪1,用来去除图像的Poisson噪声。2000年,在基于无噪图像小波系数服从广义高斯分布的假设前提下,Chang等人提出一种针对图像的
BayesShrink阈值去噪方法,小波去噪的理论还在不断发展,从变换方法上进行研究,通过选择不同的基函数或利用框架来进行变换(非抽取小波变换)或通过选取最优基来进行变换(小波包,多小波),在图像处理方面得到了更好的去噪效果。一些学者对小波系数建模,并与空域自适应方法结合,提出多种基于小波系数模型的去噪方法,其去噪效果取决于小波系数建模是否准确,这些都丰富-f,J,波去噪的内容。小波去噪方法还有基于非正交小波的去噪算法,基于小波包分解的去噪算法以及基于多小波的去噪算法等,
基于小波变换的图像去噪 来自淘豆网m.daumloan.com转载请标明出处.