下载此文档

2022届韶关市高三第二次联考数学试卷含解析.doc


文档分类:中学教育 | 页数:约19页 举报非法文档有奖
1/19
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/19 下载此文档
文档列表 文档介绍
2021-2022高考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答售方案,销售额在和的店铺中共抽取两家店铺进行销售研究,求抽取的店铺销售额在中的个数的分布列和数学期望.
19.(12分)已知函数f(x)=xlnx,g(x)=,
(1)求f(x)的最小值;
(2)对任意,都有恒成立,求实数a的取值范围;
(3)证明:对一切,都有成立.
20.(12分)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:
甲公司员工:410,390,330,360,320,400,330,340,370,350
乙公司员工:360,420,370,360,420,340,440,370,360,420
每名快递员完成一件货物投递可获得的劳务费情况如下:,乙公司规定每天350件以内(含350件),.
(1)根据题中数据写出甲公司员工在这10天投递的快件个数的平均数和众数;
(2)为了解乙公司员工每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为 (单位:元),求的分布列和数学期望;
(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.
21.(12分)在中,内角A,B,C的对边分别为a,b,c,且满足.
(1)求B;
(2)若,AD为BC边上的中线,当的面积取得最大值时,求AD的长.
22.(10分)椭圆:()的离心率为,它的四个顶点构成的四边形面积为.
(1)求椭圆的方程;
(2)设是直线上任意一点,过点作圆的两条切线,切点分别为,,求证:直线恒过一个定点.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.A
【解析】
利用两角和与差的余弦公式展开计算可得结果.
【详解】
,.
故选:A.
【点睛】
本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.
2.A
【解析】
由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1.再由球与圆柱体积公式求解.
【详解】
由三视图还原原几何体如图,
该几何体为组合体,上半部分为半球,下半部分为圆柱,
半球的半径为1,圆柱的底面半径为1,高为1.
则几何体的体积为.
故选:.
【点睛】
本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平.
3.C
【解析】
由复数除法求出,写出共轭复数,写出共轭复数对应点坐标即得
【详解】
解析:,,
对应点为,在第三象限.
故选:C.
【点睛】
本题考查复数的除法运算,共轭复数的概念,复数的几何意义.掌握复数除法法则是解题关键.
4.C
【解析】
利用复数的四则运算可得,即可得答案.
【详解】
∵,∴,
∴,∴复数的虚部为.
故选:C.
【点睛】
本题考查复数的四则运算、虚部概念,考查运算求解能力,属于基础题.
5.B
【解析】
由于到直线的距离和等于中点到此直线距离的二倍,所以只需求中点到此直线距离的最大值即可。再得到中点的轨迹是圆,再通过此圆的圆心到直线距离,半径和中点到此直线距离的最大值的关系可以求出。再通过裂项的方法求的前项和,即可通过不等式来求解的取值范围.
【详解】
由,得,.设线段的中点,则,在圆上,到直线的距离之和等于点到该直线的距离的两倍,点到直线距离的最大值为圆心到直线的距离与圆的半径之和,而圆的圆心到直线
的距离为,,,.
.
故选:
【点睛】
本题考查了向量数量积,点到直线的距离,数列求和等知识,是一道不错的综合题.
6.A
【解析】
解出集合A和B即可求得两个集合的并集.
【详解】
∵集合{x∈Z|﹣2<x≤3}={﹣1,0,1,2,3},
B={y∈N|y=x﹣1,x∈A}={﹣2,﹣1,0,1,2},
∴A∪B={﹣2,﹣1,0,1,2,3}.
故选:A.
【点睛】
此题考查求集合的并集,关键在于准确求解不等式,根据描述法表示的集合,准确写出集合中的元素.
7.D
【解析】
根据面面垂直的判定定理,对选项中的命题进行分析、判断正误即可.
【详解】
对于A,当,,时,则平面与平面可能相交

2022届韶关市高三第二次联考数学试卷含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数19
  • 收藏数0 收藏
  • 顶次数0
  • 上传人开心果
  • 文件大小1.49 MB
  • 时间2022-07-24