下载此文档

阻尼最小二乘法.doc


文档分类:高等教育 | 页数:约5页 举报非法文档有奖
1/5
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/5 下载此文档
文档列表 文档介绍
阻尼最小二乘法
the Levenberg–Marquardt algorithm (LMA)[1]provides a numerical solution to the problem of minimizing a function, generally nonlinear, over a space of parameters of the function. These minimization problems arise especially in least squares curve fitting and nonlinear programming.
The LMA interpolates between the Gauss–Newton algorithm (GNA就是最小二乘) and the method of gradient LMA is more robust than the GNA, which means that in many cases it finds a solution even if it starts very far off the final minimum. For well-behaved functions and reasonable starting parameters, the LMA tends to be a bit slower than the GNA. LMA can also be viewed as Gauss–Newton using a trust region approach.
However, the LMA finds only a local minimum, not a global 。这是所有线性反演的通病。
The problem
The primary application of the Levenberg–Marquardt algorithm is in the least squares curve fitting problem: given a set of m empirical datum pairs ofindependent and dependent variables, (xi, yi), optimize the parameters β of the model curve f(x,β) so that the sum of the squares of the deviations
es minimal.
The solution
Like other numeric minimization algorithms, the Levenberg–Marquardt
algorithm is an iterative procedure. To start a minimization, the user has to provide an initial guess for the parameter vector, β. In cases with only one minimum, an uninformed stan

阻尼最小二乘法 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数5
  • 收藏数0 收藏
  • 顶次数0
  • 上传人wz_198614
  • 文件大小18 KB
  • 时间2017-07-17
最近更新