江南大学物联网工程学院实验报告
课程名称人工智能实验名称 BP神经网络实验日期 2016-04-30
班级计科1305 姓名游思睿学号 1030413529
实验报告要求
实验目的:
两个输入a、b(10以内的数),一个输出 c,c=a+b。换句话说就是教BP神经网络加法运算。
实验内容:
Data 用来表示已经知道的数据样本的数量,也就是训练样本的数量。In 表示对于每个样本有多少个输入变量; Out 表示对于每个样本有多少个输出变量。Neuron 表示神经元的数量,TrainC 来表示训练的次数。再来我们看对神经网络描述的数据定义,来看下面这张图里面的数据类型都是 double 型。
d_in[Data][In] 存储 Data 个样本,每个样本的 In 个输入。d_out[Data][Out] 存储 Data 个样本,每个样本的 Out 个输出。我们用邻接表法来表示图1 中的网络,w[Neuron][In] 表示某个输入对某个神经元的权重,v[Out][Neuron] 来表示某个神经元对某个输出的权重;与之对应的保存它们两个修正量的数组 dw[Neuron][In] 和 dv[Out][Neuron]。数组 o[Neuron] 记录的是神经元通过激活函数对外的输出,OutputData[Out] 存储BP神经网
络的输出。
初始化主要是涉及两个方面的功能,一方面是对读取的训练样本数据进行归一化处理,归一化处理就是指的就是将数据转换成0~1之间。在BP神经网络理论里面,并没有对这个进行要求,不过实际实践过程中,归一化处理是不可或缺的。因为理论模型没考虑到,BP神经网络收敛的速率问题,一般来说神经元的输出对于0~1之间的数据非常敏感,归一化能够显著提高训练效率。可以用以下公式来对其进行归一化,其中加个常数A 是为了防止出现 0 的情况(0不能为分母)。
y=(x-MinValue+A)/(MaxValue-MinValue+A)
另一方面,就是对神经元的权重进行初始化了,数据归一到了(0~1)之间,那么权重初始化为(-1~1)之间的数据,另外对修正量赋值为0
函数 backUpdate(i) 负责的是将预测输出的结果与样本真实的结果进行比对,然后对神经网络中涉及到的权重进行修正,也这是BP神经网络实现的关键所在。如何求到对于 w[Neuron][In] 和 v[Out][Neuron] 进行修正的误差量便是关键所在!误差修正量的求法在基本模型一文中数学分析部分有解答,具体问题具体分析,落实到我们设计的这个BP神经网络上来说,需要得到的是对w[Neuron][In] 和 v[Out][Neuron] 两个数据进行修正误差,误差量用数据结构 dw[Neuron][In] 和 dv[Out][Neuron] 来进行存储。那么来分析下这两个修正误差量是什么样的?推导的思路与基本模型中推导误差量的一致,这里仅列出对具体对于我们设计的BP神经网络中的数学推导过程:
实验环境
VS2010
实验步骤(对照截图具体说明,尽量详细)
#include <>
#include <>
BP神经网络实验报告 来自淘豆网m.daumloan.com转载请标明出处.