下载此文档

微积分证明不等式方法.doc


文档分类:高等教育 | 页数:约20页 举报非法文档有奖
1/20
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/20 下载此文档
文档列表 文档介绍
用微积分理论证明不等式的方法
江苏省扬中高级中学卞国文 212200
高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似.
微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式.
一、用导数定义证明不等式法
-导数定义
导数定义:设函数在点的某个邻域内有定义,若极限存在,则称函数在可导,称这极限为函数在点的导数,记作.
:
(1)找出,使得恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究.

例1:设函数,其中都为实数,为正整数,已知对于一切实数,有,试证:.
分析:问题中的条件与结论不属于同一类型的函数,如果能找出它们之间的关系,无疑能帮助解决此题,可以看出:.于是问题可以转化为证明.
证明:
.利用导数的定义得:.由于.
.

用导数定义证明不等式,此方法得适用范围不广,,因此可利用导数的定义将其形式转化,以达到化繁为简的目的.

-可导函数的一阶导数符号与函数单调性关系定理
定理一:若函数在可导,则在内递增(递减)的充要条件是:
.
定理二:设函数在连续,在内可导,如果在内(或),那么在上严格单调增加(或严格单调减少).
定理三:设函数在内可导,若(或),则在内严格递增(或严格递减).
上述定理反映了可导函数的一阶导数符号与函数单调性的关系,因此可用一阶导数研究函数在所讨论区间上的单调性.

(1)构造辅助函数,取定闭区间;
△如何构造辅助函数?
①利用不等式两边之差构造辅助函数(见例2);
②利用不等式两边相同“形式”的特征构造辅助函数(见例3);
③若所证的不等式涉及到幂指数函数,则可通过适当的变形(若取对数)将其化为易于证明的形式,再如前面所讲那样,根据不等式的特点,构造辅助函数(见例4).
(2)研究在上的单调性,从而证明不等式.

例2:证明不等式:.
分析:利用差式构造辅助函数,则将要证明的结论转化为要证,而,因而只要证明.
证明:令,易知在上连续,且有,由定理二可知在上严格单调增加,所以由单调性定义可知,
.
例3:求证:.
分析:不等式两边有相同的“形式”: :.
证明:,且有
.,有,得到
,所以原不等式成立.
例4:证明:当时,.
分析:此不等式为幂指数函数不等式,若直接利用差式构造辅助函数将很难求其导数,更很难判断其在上的单调性,可对不等式两边分别取对数得到,化简得,在此基础上可利用差式构造辅助函数:
,因,因而只要证明即可.
证明:分别对不等式得两边取对数,有,化简有:
.设辅助函数,,易知在上连续,也在上连续,因,根据定理二,得在上严格单调增加,,且,根据定理二可知在上严格单调增加,所以,即,因此,即.

利用函数单调性证明不等式,不等式两边的函数必须可导;对所构造的辅助函数应在某闭区间上连续,开区间内可导,且在闭区间的某端点处的值为0,然后通过在开区间内的符号来判断在闭区间上的单调性.
三、函数的极值与最大、最小值证明不等式法
-极值的充分条件定理
定理四(极值的第一充分条件) 设在连续,在内可导,
(i)若当时,,当时,,则在取得极大值;
(ii) 若当时,,当时,,则在取得极小值.
定理五(极值的第二充分条件) 设在的某领域内一阶可导,在处二阶可导,且,,(i)若,则在取得极大值;(ii)若,则在取得极小值.
,,.

(1)构造辅助函数,并取定区间.
△如何构造辅助函数?
①当不等式两边均含有未知数时,可利用不等式两边之差构造辅助函数(见例5);
②当不等式两边含

微积分证明不等式方法 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数20
  • 收藏数0 收藏
  • 顶次数0
  • 上传人63229029
  • 文件大小777 KB
  • 时间2017-08-12