该【各种长晶方法 】是由【落意心冢】上传分享,文档一共【33】页,该文档可以免费在线阅读,需要了解更多关于【各种长晶方法 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。各种长晶方法
汇报人:
为何使用蓝宝石当LED衬底材料
可用于LED衬底的材料主要有硅、碳化硅、蓝宝石、氮化镓等。由于硅单晶和氮化镓晶格匹配太差无无法商业化应用;碳化硅单晶成本价格较高,目前市价约是蓝宝石晶体的5倍以上,且只有美国科瑞公司掌握成熟技术,目前占市场应用不到10%;氮化镓单晶制备更是困难,虽然同质外延质量最好,但价格是蓝宝石晶体的数百倍。综上所述,预计在未来10到30年范围,蓝宝石单晶是LED衬底材料的理想选择
单晶蓝宝石长晶方法
蓝宝石单晶的制备工艺路线较多,其中比较典型有以下几种
提拉法(CZ)
坩埚下降法
热交换法(HEM)
泡生法(KY)
除了以上几项主流的方法外,还有温度梯度法(TGT)、焰熔法、导模法(EFG)、水平结晶法(HDC)…等
提拉法(CZ)
柴氏拉晶法(Czochralskimethod),,再利用一单晶晶种接触到熔汤表面,在晶种与熔汤的固液界面上因温度差而形成过冷。于是熔汤开始在晶种表面凝固并生长和晶种相同晶体结构的单晶。晶种同时以极缓慢的速度往上拉升,并伴随以一定的转速旋转,随着晶种的向上拉升,熔汤逐渐凝固于晶种的液固界面上,进而形成一轴对称的单晶晶锭.
坩埚上方有一根可以旋转和升降的提拉杆,杆的下端有一个夹头,其上装有一根籽晶。降低提拉杆,使籽晶插入熔体中,只要熔体的温度适中,籽晶既不熔解,也不长大,然后缓慢向上提拉和转动籽晶杆,同时缓慢降低加热功率,籽晶逐渐长粗。小心地调节加热功率,就能得到所需直径的晶体。整个生长装置安放在一个外罩里,以保证生长环境有所需要的气体和压力。
提拉法生长方式示意图
射频线圈
熔体
坩埚
炉内保温系统剖面图
有关工艺参数控制
1)加热方式提拉法生长晶体的加热方法一般采用电阻加热和高频感应加热,在无坩埚生长时可采用激光加热、电子束加热、等离子体加热和弧光成像加热等加热方式
电阻加热的优点是成本低,可使用大电流、低电压的电源,并可以制成各种形状的加热器;高频加热可以提供较干净的环境,时间响应快,但成本高
2)晶体直径的控制提拉法生长的晶体直径的控制方法很多,有人工直接用眼睛观察进行控制,也有自动控制。自动控制的方法目前一般有利用弯月面的光反射、晶体外形成像法、称重等法
提拉法生长晶体的优点
1)在生长过程中,可以直接观察晶体的生长状况,这为控制晶体外形提供了有利条件
2)晶体在熔体的自内表面处生长,而不与坩埚相接触,能够显著减小晶体的应力并防止坩埚壁上的寄生成核
3)可以方便地使用定向籽晶的和“缩颈”工艺,得到不同取向的单晶体,降低晶体中的位错密度,减少镶嵌结构,提高晶体的完整性
提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。例如,提拉法生长的红宝石与焰熔法生长的红宝石相比,具有效低的位错密度,较高的光学均匀性,也没有镶嵌结构。
提拉法生长晶体的缺点
1)一般要用坩埚作容器,导致熔体有不同程度的污染
2)当熔体中含有易挥发物时,则存在控制组分的困难
3)适用范围有一定的限制。例如,它不适于生长冷却过程中存在固态相变的材料,也不适用于生长反应性较强或熔点极高的材料,因为难以找到合适的坩埚来盛装它们
总之,提拉法生长的晶体完整性很高,面其生长速率和晶体尺寸也是令人满意的。设计合理的生长系统、精确面稳定的温度控制、熟练的操作技术是获得高质量晶体的重要前提条件
坩埚下降法的缺点
1)不适宜生长在冷却时体积增大的晶体
2)由于晶体在整个生长过程中直接与坩埚接触,往往会在晶体中引入较大的内应力和较多的杂质
3)在晶体生长过程中难于直接观察,生长周期也比较长
4)若在下降法中采用籽晶法生长,如何使籽晶在高温区既不完全熔融,又必须使它有部分熔融以进行完全生长,是一个比较难控制的技术问题
总之,B-S法的最大优点是能够制造大直径的晶体(直径达200mm),其主要缺点是晶体和坩埚壁接触容易产生应力或寄生成核。它主要用于生长碱金属和碱土金属的卤族化合物(例如CaF2、LiF、NaI等)以及一些半导体化合物(例如AgGaSe2、AgGaS2、CdZnTe等)晶体
各种长晶方法 来自淘豆网m.daumloan.com转载请标明出处.