该【人教版八年级下册数学一次函数知识点归纳及练习(2) 】是由【莫比乌斯】上传分享,文档一共【4】页,该文档可以免费在线阅读,需要了解更多关于【人教版八年级下册数学一次函数知识点归纳及练习(2) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。一次函数
、变量:
在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。
二、函数的概念:
函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
三、函数中自变量取值范围的求法:
(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.
五、用描点法画函数的图象的一般步骤
1、列表(表中给出一些自变量的值及其对应的函数值。)
注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:
(1)列表法(2)图像法(3)解析式法
七、正比例函数与一次函数的概念:
一般地,形如y=kx(k为常数,且k≠0)。
一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.
当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.
八、正比例函数的图象与性质:
(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。
(2)性质:当k>0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y=kx经过二,四象限,从左向右下降,即随着x的增大y反而减小。
九、求函数解析式的方法:
待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。
一次函数与一元一次方程:从“数”的角度看x为何值时函数y=ax+b的值为0.
求ax+b=0(a,b是常数,a≠0)的解,从“形”的角度看,求直线y=ax+b与x轴交点的横坐标
一次函数与一元一次不等式:
解不等式ax+b>0(a,b是常数,a≠0).从“数”的角度看,x为何值时函数y=ax+b的值大于0.
+b>0(a,b是常数,a≠0).从“形”的角度看,求直线y=ax+b在x轴上方的部分(射线)所对应的的横坐标的取值范围.
十、一次函数与正比例函数的图象与性质
一 次 函 数
概 念
如果y=kx+b(k、b是常数,k≠0),=0时,一次函数y=kx(k≠0)也叫正比例函数.
图 像
一条直线
性 质
k>0时,y随x的增大(或减小)而增大(或减小);
k<0时,y随x的增大(或减小)而减小(或增大).
直线y=kx+b(k≠0)的位置与k、b符号之间的关系.
(1)k>0,b>0图像经过一、二、三象限;
(2)k>0,b<0图像经过一、三、四象限;
(3)k>0,b=0图像经过一、三象限;
(4)k<0,b>0图像经过一、二、四象限;
(5)k<0,b<0图像经过二、三、四象限;
(6)k<0,b=0图像经过二、四象限。
一次函数表达式的确定
求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.
:
解方程组
从“数”的角度看,自变量(x)
求出这个函数值
解方程组从“形”的角度看,确定两直线交点的坐标.
练习题
一、(每小题3分,共30分)
,自变量x的取值范围是x≥2的是()
====·
=x+1的图象上()
A.(2,1)B.(-2,1)C.(2,0)D.(-2,0)
,y是x的正比例函数的是()
=2x-===-2x+1
=-5x+3的图象经过的象限是()
、二、、三、四
、二、、三、四
=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()
>=<=-
=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()
><k≤≤k<<k<3
=-x+1平行,且过点(8,2),那么此一次函数的解析式为()
=-x-=-x-=-x+=-x-1
,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系用图象表示应为下图中的()
,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,,李老师请学生画出他行进的路程y(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()
=kx+b的图象经过点(2,-1)和(0,3),那么这个一次函数的解析式为()
=-2x+=-3x+=3x-=x-3
二、(每小题3分,共30分)
=mx+2-m是正比例函数,则m=________,该函数的解析式为_________.
(1,3)在正比例函数y=kx的图象上,则此函数的解析式为________.
=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.
+2=3x-2得x=2,则当x_________时直线y=x+2上的点在直线y=3x-2上相应点的上方.
=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.
=kx+b交于y轴的负半轴,且y的值随x的增大而减少,则k____0,b______0.(填“>”、“<”或“=”)
=x-3与y=2x+2的交点为(-5,-8),则方程组的解是________.
=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.
=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.
,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.
三、(共60分)
21.(14分)根据下列条件,确定函数关系式:
(1)y与x成正比,且当x=9时,y=16;
(2)y=kx+b的图象经过点(3,2)和点(-2,1).
22.(12分)一次函数y=kx+b的图象如图所示:
(1)求出该一次函数的表达式;
(2)当x=10时,y的值是多少?
(3)当y=12时,x的值是多少?
23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,(含备用零钱)的关系如图所示,结合图象回答下列问题:
(1)农民自带的零钱是多少?
(2)降价前他每千克土豆出售的价格是多少?
(3),这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?
24.(10分)如图所示的折线ABC表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?
25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、.1米,,可获利50元;,B种布料0.9米,,用这批布料生产两种型号的时装所获得的总利润为y元.
①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;
②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?
人教版八年级下册数学一次函数知识点归纳及练习(2) 来自淘豆网m.daumloan.com转载请标明出处.