下载此文档

统计概率知识点梳理总结.doc


文档分类:中学教育 | 页数:约36页 举报非法文档有奖
1/36
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/36 下载此文档
文档列表 文档介绍
统计概率知识点梳理总结
第一章随机事件与概率
一、教学要求
,了解随机试验、样本空间的概念,掌握事件之间的关系与运算.
,掌握概率的基本性质并能运用这些性质进行概率计算.
,掌握概率的乘法公式、全概率公式、贝叶斯公式,并能运用这些公式进行概率计算.
,掌握运用事件独立性进行概率计算.
,能够将实际问题归结为贝努里概型,然后用二项概率计算有关事件的概率.
本章重点:随机事件的概率计算.
二、知识要点

具有下列三个特性的试验称为随机试验:
(1) 试验可以在相同的条件下重复地进行; ·
(2) 每次试验的可能结果不止一个,但事先知道每次试验所有可能的结果;
(3) 每次试验前不能确定哪一个结果会出现.
试验的所有可能结果所组成的集合为样本空间,用表示,其中的每一个结果用表示,称为样本空间中的样本点,记作.

在随机试验中,把一次试验中可能发生也可能不发生、而在大量重复试验中却呈现某种规律性的事情称为随机事件(简称事件).通常把必然事件(记作)与不可能事件(记作)
看作特殊的随机事件.
3.**事件的关系及运算
(1) 包含:若事件发生,一定导致事件发生,那么,称事件包含事件,记作(或).
(2) 相等:若两事件与相互包含,即且,那么,称事件与相等,记作.
(3) 和事件:“事件A与事件B中至少有一个发生”这一事件称为A与B的和事件,记作;“n个事件中至少有一事件发生”这一事件称为的和,记作(简记为).
(4) 积事件:“事件A与事件B同时发生”这一事件称为A与B的积事件,记作(简记为);“n个事件同时发生”这一事件称为的积事件,记作(简记为或).
(5) 互不相容:若事件A和B不能同时发生,即,那么称事件A与B互不相容(或互斥),若n个事件中任意两个事件不能同时发生,即(1≤i<j≤几),那么,称事件互不相容.
(6) 对立事件:若事件A和B互不相容、且它们中必有一事件发生,即且,那么,(或逆事件)记作.
(7) 差事件:若事件A发生且事件B不发生,那么,称这个事件为事件A与B的差事件,记作(或) .
(8) 交换律:对任意两个事件A和B有
,.
(9) 结合律:对任意事件A,B,C有
, .
(10) 分配律:对任意事件A,B,C有
, .
(11) 德摩根(De Morgan)法则:对任意事件A和B有
, .

(1) 频率的定义
设随机事件A在n次重复试验中发生了次,则比值/n称为随机事件A发生的频率,记作,即.
(2) 概率的统计定义
在进行大量重复试验中,随机事件A发生的频率具有稳定性,即当试验次数n很大时,频率在一个稳定的值(0<<1)附近摆动,规定事件A发生的频率的稳定值为概率,即.
(3) **古典概率的定义
具有下列两个特征的随机试验的数学模型称为古典概型:
(i) 试验的样本空间是个有限集,不妨记作;
(ii) 在每次试验中,每个样本点()出现的概率相同,即
.
在古典概型中,规定事件A的概率为
.
(4) 几何概率的定义
如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为
·
(5) 概率的公理化定义
设随机试验的样本空间为,随机事件A是的子集,是实值函数,若满足下列三条公理:
公理1 (非负性) 对于任一随机事件A,有≥0;
公理2 (规范性) 对于必然事件,有;
公理3 (可列可加性) 对于两两互不相容的事件,有
,
则称为随机事件A的概率.
5.**概率的性质
由概率的三条公理可导出下面概率的一些重要性质
(1) .
(2) (有限可加性) 设n个事件两两互不相容,则有
.
(3) 对于任意一个事件A:
.
(4) 若事件A,B满足,则有
,
.
(5) 对于任意一个事件A,有.
(6) (加法公式) 对于任意两个事件A,B,有
.
对于任意n个事件,有
.
6.**条件概率与乘法公式
,,规定
.
在同一条件下,条件概率具有概率的一切性质.
乘法公式:对于任意两个事件A与B,当,时,有
.
7.*随机事件的相互独立性
如果事件A与B满足
,
那么,称事件A与B

统计概率知识点梳理总结 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数36
  • 收藏数0 收藏
  • 顶次数0
  • 上传人63229029
  • 文件大小850 KB
  • 时间2017-10-20
最近更新