the bivariate empirical mode decomposition and its contribution to grinding chatter detection 2017 huanguo chen资料.pdf


文档分类:建筑/环境 | 页数:约17页 举报非法文档有奖
1/17
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/17
文档列表 文档介绍
该【the bivariate empirical mode decomposition and its contribution to grinding chatter detection 2017 huanguo chen资料 】是由【小舍儿】上传分享,文档一共【17】页,该文档可以免费在线阅读,需要了解更多关于【the bivariate empirical mode decomposition and its contribution to grinding chatter detection 2017 huanguo chen资料 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。:..appliedsciencesArticlepositionandItsContributiontoGrindingChatterDetectionHuanguoChen1,*,JianyangShen1,WenhuaChen1,ChuanyuWu1,ChunshaoHuang2,YongyuYi1andJiachengQian11ZhejiangProvince’sKeyLaboratoryofReliabilityTechnologyforMechanicalandElectricalProduct,Hangzhou310018,China;slylgdx1992@(.);******@zstu.(.);******@zstu.(.);yiyongyu123@(.);**********@(.)oolCo.,Ltd.,Hangzhou311305,China;-h-cs@*Correspondence:******@zstu.;Tel.:+86-571-8684-3369AcademicEditor:GangbingSongReceived:2November2016;Accepted:25January2017;Published:8February2017Abstract:Grindingchatterreducesthelong-,,bivariateposition(BEMD),(IMFs)wasalsoinvestigated,,real-,binationofBEMDandHilberttransformwasvalidatedbyexperimentaldataC),:position(BEMD);Hilberttransform;multiplesignals;synchronouscharacteristic;real-timevariance;,whichareoftenhigh-precision,large-tonnagemachines,,whichhasgreatpracticalandeconomicvalue[1,2].Mostnotably,grinderscanentera“chatter”stateduringmachiningoperations,whichcausesaseriesofnegativeeffects[3]suchasmachinedsurfaceundulations,reducedtoollife,poorsurface?nish,noise,,regenerationandmodecouplingarethreewell-,,theamplitudeofvibrationsignalsincreasessubstantiallywhenastablegrindingstateturnsintoachatterstate[4].Additionally,thereisatransitionalphaseinthisprocess,whichcontainsconsiderableinformationaboutgrindingstatus[5].Thus,wecandiscoverthemechanismofgrindingchatterandpredictitbyanalyzingtransition-,7,145;doi::..,7,,reliablechatterdetectionandidenti?cationmethodsareessentialsothateffectivechattersuppressioncanbeappliedinatimelymanner[6].elerometers,acousticemission(AE),,andusedans-transformationtoextractadampingindexasadescriptivefeatureofchatter[7].-dimensionalfeaturevectorsforchatterdetectionbasedonthestandarddeviationofwavelettransformofdrillingmachining,whichallowedrapidchatteridenti?cation[8].Furthermore,[9].Moreover,-grainedentropyrateasachatterindexinacuttingprocess,whichexhibitedadrasticdropattheonsetofchatter[10].,acomputer-based,rapidmeasurementofchatteronsetusingsoundsignalsrecordedbyaunidirectionalmicrophone[11].-stepself-correlationfunctionasachatterindicatorfordetectingcuttingstate[12].;thespeci?cpeculiaritiesofacousticemissionsensorscaneffectivelyrejectexternaldisturbances[13].Insummary,wavelettransform[14,15],s-transformation[16],position(SVD)[17],andarti?cialintelligence[18],,grindervibrationsignalsaremostlynonstationaryandnonlinear,suchthattheseconventionalmethodscannoteffectivelyextractsignalfeatures[19].Subsequently,position(EMD),proposedbyHuangetal.,ingsofconventionaltechniques[20].posesignalsintoseveralintrinsicmodefunctions(IMFs)-,inpractice,grindervibrationsignalsareusuallymultidimensionalsignals,yetcurrentmethodsareonlyusefulwithone-dimensional,real-valuetimeseries[21].Theyareunfavorableforexecutinginformationfusionuratelyre?ectingreal-,,whichgeneralizestherationaleunderlyingEMDtothebivariateframework,namely,position(BEMD)[22].Sincebeingproposed,ithasbeenappliedtoimageprocessingsuchasimagesegmentation[23],imagefusion[24],imagecompression[25]andimagewatermarking[26].AtthethirdsessionoftheHHTInternationalConference,essfullyappliedtowindturbineconditionmonitoring[27].IthasbeenshownthattheBEMDtechniquehasinheritedallthemeritsoftheone-,incontrasttoEMD,posingacomplex-valuedsignalintoacollectionofzero-ponents,[27].parisonbetweentheuseofEMDandBEMDforextractingfeaturesfromgrindingchattersignals,anddemonstratedthesuperiorperformanceofBEMD[28].These?ndingscanbesummarizedasfollows:(1)EMDisinitiallyappliedtoaone-dimensionalsignalandextractszero-ponents,whereasBEMDisappliedtoabivariatesignalandextractszero-ponents;(2)BEMDplex-valuesignals,,posesignalsonebyoneandobtainsbothupperandlowerenvelopesbyconnectingtheextremepoints;(3):..,7,1453of17characteristicsandphaseshifting,,thenumberofIMFsderivedbyBEMDisnormallythesame,andBEMDcanextractaninformationfusionfunctionandpreservephasedifferences;(4)BEMDfacilitatestheestablishmentofpuri?edshaftvibrationorbitsandfullyguaranteesthecorrectnessofresults,’,thealgorithmsofBEMDandHilberttransformarereviewed,,real-,asimulatedchattersignalisgeneratedfromachattersignalgenerator(Simulink,MATLAB,pany,Natick,MA,USA),,,biningBEMDandHilberttransformareexperimentallyvalidatedbyprocessingchattersignalscollectedfromarealgrinder(KD4020X16).(BEMD):,?nedbythelocalmaximumpointsandtheenvelopede?,,s(t)=x(t)+iy(t),andasetofprojectiondirections,jm=2mp/N,1m:(t)ondirectionsjm:pj(t)=Re[eijms(t)],(1)(t):f(tm,pm)g,(tm,eijmpm)gbycubicsplineinterpolationtoobtainthepartialjjenvelopecurveindirectionjmnamedejm(t).–:1Nm(t)=?er(t),(2)Nr=(t)froms(t)toobtaing(t):g(t)=s(t)m(t),(3)(t)isanIMF,ifnot,replaces(t)withg(t)andrepeattheprocedurefromStep1untilg(t),recordtheobtainedIMFandremoveitfromg(t),.,c1(t)=g(t),r1(t)=s(t)c1(t).:..,7,(t)astheoriginalsignalandrepeattheaboveprocedureuntilthesecondIMF,c2(t),isobtained,ponentr2(t)=r1(t)c2(t).,theterms(t)canbeexpressedbytheprocedure:ns(t)=?hk(t)+rn(t),(4)k=1wherehk(t)plex-valuedIMFandrn(t)denotesanon-zeromeanlow-,(IMFs)posedintoexcessiveIMFs,whicharedescribedponentsthatdirectlyaffectresearchers’,re??cienciesisthattheestimationoftheauthenticityofIMFheavilydependsontheuser’,areliableponents,whichisofgreatimportanceinextractingtheactualvibrationmodeandthecorrespondingfeaturesofthetime-:(1)IMFsde?nedbyBEMDalgorithmsarebasedonnumericalanalysisonlyanddonotconsiderthevibrationcharacteristicsofsysteminthephysicalsense;(2)positionandendeffectsarenotwellprocessed;(3),,acorrelationcoef?cientisusedasastatisticalindicatortore?,asshowninEquation(5).Cov(X,Y)E[(XE(X))(YE(Y))]r=pp=pp(5)D(X)D(Y)D(X)D(Y)whereCov(X,Y)denotesthecovariancebetweentheoriginalsignalandtheIMF,E(X)andD(X)denotetheexpectationandvarianceoftheoriginalsignal,respectively,andE(Y)andD(Y)denotetheexpectationandvarianceofthekthIMF,,itisreasonabletoemploytheponentsfromtrueIMFsandthenclassifythemasapartofresidual[16,29].Inviewofthis,ifthecorrelationcoef?cientofeachIMF,rk(k=1,2,...,n),puted,thetrueIMFscanbeextractedbythefollowingmethod(Table1).(IMFs)basedonthecorrelationcoef?l,ReservethekthIMFck,Else,EstimatekthIMF,andrn=rn+?xedthresholdthatisgenerallyadoptedasaratioofthemaximumcorrelationcoef?cient,whereinhisaratiocoef?=max(jrkj/h),k=1,2...n,(6):..,7,,,putationalef?,putationaltimeandstabilitydegree(SD)?nedas,N4?(Xjm)j=1SD=N(7)((Xm)2)2?jj=1whereX={X1,X2,X3,...,XN}T(X2R,j=1,2,...,N,Tisatransposeoperator),Nrepresentsthejsamplingpoints,

the bivariate empirical mode decomposition and its contribution to grinding chatter detection 2017 huanguo chen资料 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数17
  • 收藏数0 收藏
  • 顶次数0
  • 上传人小舍儿
  • 文件大小4.28 MB
  • 时间2023-07-29