下载此文档

求魔方阵的十种算法.doc


文档分类:生活休闲 | 页数:约26页 举报非法文档有奖
1/26
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/26 下载此文档
文档列表 文档介绍
求魔方阵的十种算法
魔方阵,古代又称“纵横图”,是指组成元素为自然数1、2…n的平方的n×n的方阵,其中每个元素值都不相等,且每行、每列以及主、副对角线上各n个元素之和都相等。
如3×3的魔方阵:
    8   1   6
    3   5   7
    4   9   2  
魔方阵的排列规律如下:
(1)将1放在第一行中间一列;
(2)从2开始直到n×n止各数依次按下列规则存放;每一个数存放的行比前一个数的行数减1,列数加1(例如上面的三阶魔方阵,5在4的上一行后一列);
(3)如果上一个数的行数为1,则下一个数的行数为n(指最下一行);例如1在第一行,则2应放在最下一行,列数同样加1;
(4)当上一个数的列数为n时,下一个数的列数应为1,行数减去1。例如2在第3行最后一列,则3应放在第二行第一列;
(5)如果按上面规则确定的位置上已有数,或上一个数是第一行第n列时,则把下一个数放在上一个数的下面。例如按上面的规定,4应该放在第1行第2列,但该位置已经被占据,所以4就放在3的下面;
1居上行正中央
依次右上切莫忘
上出框时往下写
右出框时左边放
右上有数下边写
右上出框也一样
魔方阵的简介
?矩阵就是由方程组的系数及常数所构成的方阵。把用在解线性方程组上既方便,又直观。
?若一个矩阵是由n个横列与n个纵行所构成,共有个小方格,则称这个方阵是一个n阶方阵。
? 4 9 2 3 5 7 8 1 6定义:由n*n个数字所组成的n阶方阵,具有各对角线,各横列与纵行的数字和都相等的性质,称为魔方阵。而这个相等的和称为魔术数字。若填入的数字是从1到n*n,称此种魔方阵为n阶正规魔方阵。
,由水中浮出两只庞大动物背上各负有一图,只有大禹才可指挥其中之由龙马负出的为河图,出自黄河;另一由理龟负出的洛书出自洛河。洛书

魔方阵最早的四阶方阵刻在印度一所庙宇石上,年代大约是十一世纪。古代印度人十分崇拜这种幻方,至今从古神殿的遗址,墓碑上常常还可以发现四阶幻方的遗迹。
Dure在他著名的铜板画Melencolia上的4×4幻方,有趣的是,他连创造年代(1514)也镶在这个方阵中,而且上下左右,四个小方阵的和皆为34,是欧洲最古老的幻方。
二、魔方阵的变形
,如下图
16 02 03 13 01 15 04 14 05 11 10 08 12 06 09 07 09 07 06 12 13 03 16 02 04 14 15 01 08 10 05 11
,如下图4 9 2 4 9 2 3 5 7 3 5 7 8 1 6 8 1 6
,称这两个魔方阵全等。在计算魔方阵个数时,我们把全等的魔方阵视为同一种。 2 7 6 8 3 4 9 5 1 1 5 9 4 3 8 6 7 2
4,刚性变形法(1)顺时针方向旋转90 (2)顺时针方向旋转180 (3)顺时针方向旋转270 (4)左右翻转(绕铅直对称轴镜射) (5)上下翻转(绕水平对称轴镜射) (6)左上右下翻转(绕右上至左下对角线镜射) (7)右上左下翻转(绕左上至右下对角线镜射)
原始方阵旋转90。旋转180。旋转270。 01 03 16 14 12 08 13 01 07 05 10 12 14 04 09 07 13 15 02 04 10 06 15 03 09 11 06 08 16 02 11 05 08 06 11 09 05 11 02 16 04 02 15 13 03 15 06 10 12 10 05 07 07 09 04 14 14 16 03 01 01 13 08 12
左右翻转上下翻转左上右下翻转右上左下翻转14 16 03 01 12 10 05 07 07 09 04 14 01 13 08 12 04 02 15 13 08 06 11 09 05 11 02 16 03 15 06 10 09 11 06 08 13 15 02 04 10 06 15 03 16 02 11 05 07 05 10 12 01 03 16 14 12 08 13 01 14 04 09 07 :首项是1,公差是1加值变形后的魔方阵:首项是a,公差是r
原始魔方首项为5公差为1首项为5公差为2 14 16

求魔方阵的十种算法 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数26
  • 收藏数0 收藏
  • 顶次数0
  • 上传人85872037
  • 文件大小189 KB
  • 时间2018-01-31
最近更新