下载此文档

初中数学平行四边形知识归纳总结及解析.doc


文档分类:中学教育 | 页数:约23页 举报非法文档有奖
1/23
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/23 下载此文档
文档列表 文档介绍
该【初中数学平行四边形知识归纳总结及解析 】是由【知识徜徉土豆】上传分享,文档一共【23】页,该文档可以免费在线阅读,需要了解更多关于【初中数学平行四边形知识归纳总结及解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。初中数学平行四边形知识归纳总结及解析一、,AE⊥BD于点E,点P是边AD上一点,PF⊥BD于点F,PA=PF.(1)试判断四边形AGFP的形状,并说明理由.(2)若AB=1,BC=2,.(1)点P为正方形ABCD外一点,且点P在AB的左侧,.①如图(1),若点P在DA的延长线上时,求证:四边形APBC为平行四边形.②如图(2),若点P在直线AD和BC之间,以AP,AD为邻边作,∠PAQ的度数.(2)如图(3),点F在正方形ABCD内且满足BC=CF,连接BF并延长交AD边于点E,过点E作EH⊥AD交CF于点H,若EH=3,FH=1,,在正方形中,是边上的一动点(不与点、重合),连接,点关于直线的对称点为,连接并延长交于点,连接,过点作交的延长线于点,连接.(1)求证:;(2)用等式表示线段与的数量关系,:如图①摆放矩形纸片ABCD与矩形纸片ECGF,使B,C,G三点在一条直线上,,若M为AF的中点,连结DM,ME,试猜想DM与ME的数量关系,:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为__________________;(2)如图②摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.[提示:直角三角形斜边上的中线等于斜边的一半]①②.(1),若四条直线中相邻两条之间的距离都是1,其中点,点分别在直线和上,求正方形的面积;(2)如图2,正方形的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为.①求证:;②设正方形的面积为,,在正方形ABCD中,点E是BC边所在直线上一动点(不与点B、C重合),过点B作BF⊥DE,交射线DE于点F,连接CF.(1)如图,当点E在线段BC上时,∠BDF=α.①按要求补全图形;②∠EBF=______________(用含α的式子表示);③判断线段BF,CF,DF之间的数量关系,并证明.(2)当点E在直线BC上时,直接写出线段BF,CF,DF之间的数量关系,,在四边形ABCD中,,,连接AC,点P、E分别在AB、CD上,连接PE,PE与AC交于点F,连接PC,,.(1)判断四边形PBCE的形状,并说明理由;(2)求证:;(3)当P为AB的中点时,四边形APCE是什么特殊四边形?,中,,连结,是边上一点,连结交于点.(1)如图1,连结,若,,求的面积;(2)如图2,延长至点,连结、,点在上,且,,,求证:.,点E在边CD所在直线上,连接BE,以BE为边,在BE的下方作正方形BEFG,并连接AG.(1)如图1,当点E与点D重合时,AG=;(2)如图2,当点E在线段CD上时,DE=2,求AG的长;(3)若AG=,,矩形中,,的垂直平分线分别交于点,垂足为.(1)如图1,连接,求证:四边形为菱形;(2)如图2,动点分别从两点同时出发,沿和各边匀速运动一周,即点自停止,,①已知点的速度为每秒,点的速度为每秒,运动时间为秒,当四点为顶点的四边形是平行四边形时,则____________.②若点的运动路程分别为(单位:),已知四点为顶点的四边形是平行四边形,则与满足的数量关系式为____________.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)四边形AGFP是菱形,理由见解析;(2)四边形AGFP的周长为:【分析】(1)根据矩形的性质和菱形的判定解答即可;(2)根据全等三角形的判定和性质,以及利用勾股定理解答即可.【详解】解:(1)四边形AGFP是菱形,理由如下:∵四边形ABCD是矩形,∴∠BAP=90°,∵PF⊥BD,PA=PF,∴∠PBA=∠PBF,∵AE⊥BD,∴∠PBF+∠BGE=90°,∵∠BAP=90°,∴∠PBA+∠APB=90°,∴∠APB=∠BGE,∵∠AGP=∠BGE,∴∠APB=∠AGP,∴AP=AG,∵PA=PF,∴AG=PF,∵AE⊥BD,PF⊥BD,∴AE∥PF,∴四边形AGFP是平行四边形,∵PA=PF,∴平行四边形AGFP是菱形;(2)在Rt△ABP和Rt△FBP中,∵PB=PB,PA=PF,∴Rt△ABP≌Rt△FBP(HL),∴AB=FB=1,∵四边形ABCD是矩形,∴AD=BC=2,∴BD=,设PA=x,则PF=x,PD=2﹣x,PF=﹣1,在Rt△DPF中,DF2+PF2=PD2,∴解得:x=,∴四边形AGFP的周长为:4x=4×.【点睛】此题考查矩形的性质,菱形的判定,全等三角形的判定和性质和勾股定理,.(1)①证明见详解;②,见解析;(2)5.【分析】(1)①只要证明即可解决问题;②如图2中,连接QC,作交QC的延长线于T,利用全等三角形的性质解决问题即可;(2)如图3中,延长EH交BC于点G,设AE=x,由题意易得AB=BC=CF=EG=3x,然后可得CG=2x,HG=3x-3,CH=3x-1,利用勾股定理求解即可.【详解】(1)①证明:四边形ABCD是正方形,,,,,四边形APBC是平行四边形;②四边形PADQ是平行四边形,,,,四边形PQCB是平行四边形,,,,DQ=DT,,AD=DC,,,,;(3)CH=5,理由如下:如图3所示:延长EH交BC于点G;四边形ABCD是正方形,AB=BC,,又EH=3,FH=1,EH⊥AD,,设AE=x,,AB=BC=CF=EG=3x,CG=2x,HG=3x-3,CH=3x-1在中,,解得当x=1时,AB=3(不符合题意,舍去);当x=2时,AB=6,CH=.【点睛】本题主要考查正方形的综合问题、三角形全等及勾股定理,关键是利用已知条件及四边形的性质得到它们之间的联系,.(1)详见解析;(2),理由详见解析【分析】1)如图1,连接DF,根据对称得:△ADE≌△FDE,再由HL证明Rt△DFG≌Rt△DCG,可得结论;(2)如图2,作辅助线,构建AM=AE,先证明∠EDG=45°,得DE=EH,证明△DME≌△EBH,则EM=BH,根据等腰直角△AEM得:,得结论;【详解】证明:(1)如图1,连接,∵四边形是正方形,∴,,∵点关于直线的对称点为,∴≌,∴,,∴,在和中,∵∴≌(),∴;(2),理由是:如图2,在线段上截取,使,∵,∴,由(1)知:,,∵,∴,∴,∴,即,∵,∴,是等腰直角三角形,∴,,∴,在和中,∴≌∴,中,,,∴,∴;【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,对称的性质,等腰直角三角形的性质等知识,解决本题的关键是利用正方形的性质得到相等的边和相等的角,证明三角形全等,:猜想DM与ME的数量关系是:DM=ME,证明见解析;拓展与延伸:(1)DM=ME,DM⊥ME;(2)证明见解析【分析】猜想:延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明.(1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明,(2)连接AC,AC和EC在同一条直线上,再利用直角三角形中,斜边的中线等于斜边的一半证明,【详解】解:猜想与证明:猜想DM与ME的数量关系是:DM=:如图①,延长EM交AD于点H.①∵四边形ABCD、四边形ECGF都是矩形,∴AD∥BG,EF∥BG,∠HDE=90°.∴AD∥EF.∴∠AHM=∠∵AM=FM,∠AMH=∠FME,∴△AMH≌△FME.∴HM=∵∠HDE=90°,∴DM=EH=ME;(1)∵四边形ABCD和CEFG是正方形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM,∴DM=HM=ME,∴DM=ME.∵四边形ABCD和CEFG是正方形,∴AD=CD,CE=EF,∵△FME≌△AMH,∴EF=AH,∴DH=DE,∴△DEH是等腰直角三角形,又∵MH=ME,故答案为:DM=ME,DM⊥ME;(2)证明:如图②,连结AC.②∵四边形ABCD、四边形ECGF都是正方形,∴∠DCA=∠DCE=∠CFE=45°,∴点E在AC上.∴∠AEF=∠FEC=90°.又∵点M是AF的中点,∴ME=AF.∵∠ADC=90°,点M是AF的中点,∴DM=AF.∴DM=ME.∵ME=AF=FM,DM=AF=FM,∴∠DFM=(180°-∠DMF),∠MFE=(180°-∠FME),∴∠DFM+∠MFE=(180°-∠DMF)+(180°-∠FME)

初中数学平行四边形知识归纳总结及解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息