该【人教版初一数学下册二元一次方程组素养达标检测卷及解析2 】是由【知识徜徉土豆】上传分享,文档一共【27】页,该文档可以免费在线阅读,需要了解更多关于【人教版初一数学下册二元一次方程组素养达标检测卷及解析2 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。一、、的方程组以下结论:①当时,方程组的解也是方程的解;②存在实数,使得;③当时,;④不论取什么实数,的值始终不变,其中正确的是()A.①②③ B.①②④ C.①③④ D.②③④,y的方程组(其中a,b是常数)的解为,则方程组的解为( )A. B. C. ,则为( ) B.-3 D.-,的方程组给出下列结论:①当时,方程组的解也是的解;②无论取何值,,的值不可能是互为相反数;③,()A. B. C. ,发现每隔12分钟从背后驶过一辆8路公交车,,而且8路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是( ) ,y的二元一次方程组,给出下列结论中正确的是()①当这个方程组的解x,y的值互为相反数时,;②当时,方程组的解也是方程的解;③无论a取什么实数,的值始终不变;④若用x表示y,则;A.①②③ B.①②④ C.①③④ D.②③④,y的二元一次方程组的解是,则关于a,b的二元一次方程组的解是()A. B. C. ,则的值为()A.-2 C.-4 ,则点P所在的象限为() ,则a2008+2b2008的值为() 、、120分的两种邮票,共花掉16元钱(两种邮票都买),、B、C带着他们的妻子a、b、c到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A比b多买9件商品,《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有5只雀、6只燕,分别聚集在一起称重,称得雀重,、一只燕交换位置,则重量相等;将5只雀、6只燕放在一起称量,、燕每1只各重多少斤?若设雀每只重斤,燕每只重斤,,:,现将一些山楂分别串在若干个竹签上,如果每根竹签串4个山楂,还剩余3个山楂;如果每根竹签串7个山楂,还剩余6根竹签,求竹签有多少根?山楂有多少个?反思归纳:现有m根竹签,n个山楂,若每根竹签串a个山楂,还剩b个山楂,则m、n、a、b满足的等量关系为(用含m、n、a、b的代数式表示).,将点P向左平移2个单位长度,再向上平移3个单位长度,得到(﹣1,3),,,如图2,,每天早晨6点开始对外停车且此时车位空置率为,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,,由于商场人数增多,早晨6点时的车位空置率变为,又因为车库改造,只能开放2个进口和1个出口,“一题多解”比赛,按分数高低取前50名获奖,原定一等奖5人,二等奖10人,三等奖35人,现调整为一等奖10人,二等奖15人,三等奖25人,调整后一等奖平均分降低5分,二等奖平均分降低3分,三等奖平均分降低1分,如果原来一等奖比二等奖平均分数多2分,,的方程组的解是,、,在平面直角坐标系中,点为坐标原点,点的坐标为,点的坐标为,其中是二元一次方程组的解,过点作轴的平行线交轴于点.(1)求点的坐标;(2)动点从点出发,以每秒个单位长度的速度沿射线的方向运动,连接,设点的运动时间为秒,三角形的面积为,请用含的式子表示(不用写出相应的的取值范围);(3)在(2)的条件下,在动点从点出发的同时,,点为垂足;过点作直线的垂线,,“我和我的祖国”;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,,,请仔细体会其中的数学思想.(1)解方程组,我们利用加减消元法,很快可以求得此方程组的解为;(2)如何解方程组呢?我们可以把m+5,n+3看成一个整体,设m+5=x,n+3=y,很快可以求出原方程组的解为;(3)由此请你解决下列问题:若关于m,n的方程组与有相同的解,求a、①,在平面直角坐标系中,点A在x轴上,直线OC上所有的点坐标,都是二元一次方程的解,直线AC上所有的点坐标,都是二元一次方程的解,过C作x轴的平行线,交y轴与点B.(1)求点A、B、C的坐标;(2)如图②,点M、N分别为线段BC,OA上的两个动点,点M从点C以每秒1个单位长度的速度向左运动,,设运动时间为t秒,且0<t<4,,A(a,0),B(0,b),a,b满足,将线段AB平移得到CD,A,B的对应点分别为C,D,其中点C在y轴负半轴上.(1)求A,B两点的坐标;(2)如图1,连AD交BC于点E,若点E在y轴正半轴上,求的值;(3)如图2,点F,G分别在CD,BD的延长线上,连结FG,∠BAC的角平分线与∠DFG的角平分线交于点H,求∠G与∠,已知和的度数满足方程组,且.(1)分别求和的度数;(2)请判断与的位置关系,并说明理由;(3):某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足50人;(2)班人数略多,,则一共应付1172元,如果两个班联合起来,作为一个团体购票,则需付1078元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为9元的票?你有什么省钱的方法来帮他们买票呢?,解答下面的问题:我们知道方程有无数个解,:由,得:,(x、y为正整数)∴,,,可知:x为3的倍数,从而x=3,代入∴2x+3y=12的正整数解为问题:(1)请你写出方程的一组正整数解: .(2)若为自然数,则满足条件的x值为.(3)七年级某班为了奖励学本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?×40cm的标准板材作为原材料,按照图①所示的裁法一或裁法二,裁剪出甲型与乙型两种板材(单位:cm).(1)求图中a、b的值;(2)若将40张标准板材按裁法一裁剪,5张标准板材按裁法二裁剪,裁剪后将得到的甲型与乙型板材做侧面或底面,做成如图②所示的竖式与横式两种无盖的装饰盒若干个(接缝处的长度忽略不计).①一共可裁剪出甲型板材张,乙型板材张;②恰好一共可以做出竖式和横式两种无盖装饰盒子多少个?,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、:B【分析】①把k=0代入方程组求出解,代入方程检验即可;②方程组消元k得到x与y的方程,检验即可;③表示出y-x,代入已知不等式求出k的范围,判断即可;④方程组整理后表示出x+3y,检验即可.【详解】解:①把k=0代入方程组得:,解得:,代入方程得:左边=-2-2=-4,右边=-4,左边=右边,此选项正确;②由x+y=0,得到y=-x,代入方程组得:,即k=3k-1,解得:,则存在实数,使x+y=0,本选项正确;③,解不等式组得:,∵,∴,解得:,此选项错误;④x+3y=3k-2+3-3k=1,本选项正确;∴正确的选项是①②④;故选:B.【点睛】:C【详解】分析:由原方程组的解及两方程组的特点知,x+y、x﹣y分别相当于原方程组中的x、y,据此列出方程组,:由题意知:,①+②,得:2x=7,x=,①﹣②,得:2y=﹣1,y=﹣,:本题主要考查二元一次方程组,解题的关键是得出两方程组的特点并据此得出关于x、:A【分析】所谓方程组的解,,再列出关于两解的等式,求出k.【详解】解:由题意,解得x=,y=,∵x的值比y的值的相反数大1,∴x+y=1,即+=1,解得k=3,故选:A.【点睛】本题主要考查解二元一次方程组和它的解,:C【分析】①根据消元法解二元一次方程组,然后将解代入方程x+y=2a+1即可求解;②根据消元法解二元一次方程组,用含有字母的式子表示x、y,再根据互为相反数的两个数相加为0即可求解;③根据试值法求二元一次方程x+y=3的自然数解即可得结论.【详解】解:①将a=1代入原方程组,得?解得,将x=3,y=0,a=1代入方程x+y=2a+1的左右两边,左边x+y=3,右边2a+1=3,当a=1时,方程组的解也是x+y=2a+1的解;故①正确;②解原方程组,得,若x,y是互为相反数,则x+y=0,即2a+1+2-2a=0,,x,y的值不可能是互为相反数;故②正确;③∵x+y=2a+1+2-2a=3,∴x、y为自然数的解有,,,.∴x、y为自然数的解有4对,故③正确;故选:C.【点睛】本题考查了消元法解二元一次方程组,确定二元一次方程的自然数解,:D【分析】首先设同向行驶的相邻两车的距离及车、小王的速度为未知数,根据等量关系把相关数值代入可得到同向行驶的相邻两车的距离及车的速度关系式,相除即可得所求时间.【详解】解:设8路公交车的速度为米/分,小王行走的速度为米/分,,则①每隔4分钟从迎面驶来一辆8路公交车,则②由①+②可得,所以,:.【点睛】本题考查了二元一次方程组的应用,:C【分析】根据方程组的解法可以得到x+y=2+a,①令x+y=0,即可求出a的值,验证即可,②由①得x+y=0,而x+y=4+2a,求出a的值,再与a=1比较得出答案,③解方程组可求出方程组的解,再代入x+2y求值即可,④用含有x、y的代数式表示a,进而得出x、y的关系,【详解】解:关于x,y的二元一次方程组,①+②得,2x+2y=4+2a,即:x+y=2+a,(1)①当方程组的解x,y的值互为相反数时,即x+y=0时,即2+a=0,∴a=﹣2,故①正确,(2)②原方程组的解满足x+y=2+a,当a=1时,x+y=3,而方程x+y=4+2a的解满足x+y=6,因此②不正确,(3)方程组,解得,,∴x+2y=2a+1+2-2a=3,因此③是正确的,(4)方程组,由方程①得,a=4﹣x﹣3y代入方程②得,x-y=3(4-x-3y),即;,因此④是正确的,故选:C.【点睛】本题考查二元一次方程组的解法和应用,:A【分析】先求出m,n的值,再代入新的二元一次方程组即可得出答案.【详解】解:关于,的二元一次方程组的解是,,,,,关于,的二元一次方程组是,,,,,,,关于,的二元一次方程组的解为:.故选:A.【点睛】本题考查了解二元一次方程组,本题的解题关键是先求出m,n的值,再代入新的二元一次方程组即可得出答案.
人教版初一数学下册二元一次方程组素养达标检测卷及解析2 来自淘豆网m.daumloan.com转载请标明出处.