下载此文档

2022年吉林省辉南县第四中学八年级数学第一学期期末监测试题含解析.doc


文档分类:中学教育 | 页数:约24页 举报非法文档有奖
1/24
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/24 下载此文档
文档列表 文档介绍
该【2022年吉林省辉南县第四中学八年级数学第一学期期末监测试题含解析 】是由【1875892****】上传分享,文档一共【24】页,该文档可以免费在线阅读,需要了解更多关于【2022年吉林省辉南县第四中学八年级数学第一学期期末监测试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年八上数学期末模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.如图圆柱的底面周长是,圆柱的高为,为圆柱上底面的直径,一只蚂蚁如果沿着圆柱的侧面从下底面点处爬到上底面点处,那么它爬行的最短路程为( )

A. B. C. D.
2.设 是三角形的三边长,且满足,关于此三角形的形状有以下判断:①是直角三角形; ②是等边三角形; ③是锐角三角形;④是钝角三角形,其中正确的说法的个数有( )
A.1个 B.2个 C.3个 D.4个
3.如图,在△ABC中,∠ACB=90°,AB的中垂线交AC于D,P是BD的中点,若BC=4,AC=8,则S△PBC为(  )
A.3 B. C.4 D.
4.已知点和在一次函数的图象上,则与的大小关系是( )
A. B. C. D.
5.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为( )
A.2a+b B.-2a+b C.b D.2a-b
6.下列命题是假命题的是( ).
A.同旁内角互补,两直线平行
B.线段垂直平分线上的点到线段两个端点的距离相等
C.相等的角是对顶角
D.角是轴对称图形
7.下列因式分解结果正确的有( )
①;②;③;④
A.1个 B.2个 C.3个 D.4个
8.在(每两个1之间的0依次增加1个)中,无理数有( )
A.2个 B.3个 C.4个 D.5个
9.三个正方形的位置如图所示,若,则 ( )
A. B. C. D.
10.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可能是( )
A.正三角形 B.正方形 C.正五边形 D.正六边形
11.等于( )
A.2 B.-2 C.1 D.0
12.如图,在△ABC中,∠C=40°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1-∠2的度数是( )
A.40° B.80° C.90° D.140°
二、填空题(每题4分,共24分)
13.如图,在△ABC中,BF⊥AC 于点F,AD⊥BC 于点D ,BF 与AD 相交于点E.若AD=BD,BC=8cm,DC=3cm.则 AE= _______________cm .

14.如图,平行四边形ABCD中,AB=3cm,BC=5cm;,BE平分∠ABC,交AD于点E,交CD延长线于点F,则DE+DF的长度为_________. 
15.直线沿轴向右平移个单位长度后与两坐标轴所围成的三角形面积等于______________.
16.如图,已知BE和CF是△ABC的两条高,∠ABC=48°,∠ACB=76°,则∠FDE=_____ .
17.《孙子算经》是中国古代重要的数学著作,现在的传本共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法,其中记载:“今有木、不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”译文:“用一根绳子量一根长木,绳子还剩余尺,将绳子对折再量长木,长木还到余尺,问木长多少尺?”设绳长尺,木长

18.如图,△ABC≌△DEC,∠ACD=28°,则∠BCE=_____°.
三、解答题(共78分)
19.(8分)如图,已知:在坐标平面内,等腰直角中,,,点的坐标为,点的坐标为,交轴于点.
(1)求点的坐标;
(2)求点的坐标;
(3)如图,点在轴上,当的周长最小时,求出点的坐标;
(4)在直线上有点,在轴上有点,求出的最小值.
20.(8分)在如图所示的平面直角坐标系中,描出点A(3,2)和点B(-1,4).
(1)求点A(3,2)关于x轴的对称点C的坐标;
(2)计算线段BC的长度.
21.(8分)新春佳节来临之际,某商铺用1600元购进一款畅销礼盒,由于面市后供不应求,决定再用6000元购进同款礼盒,已知第二次购进的数量是第一次的3倍,?
22.(10分)已知:如图,C是AB上一点,点D,E分别在AB两侧,AD∥BE,且AD=BC,BE=AC.
(1)求证:CD=CE;
(2)连接DE,交AB于点F,猜想△BEF的形状,并给予证明.
23.(10分)如图1 ,等腰直角三角形 ABC 中,∠ACB=90°,CB=CA,直线 DE 经过点 C,过 A 作 AD⊥DE 于点 D,过 B 作 BE⊥DE 于点 E,则△BEC≌△CDA,我们称这种全等模型为 “K 型全等”.(不需要证明)
(模型应用)若一次函数 y=kx+4(k≠0)的图像与 x 轴、y 轴分别交于 A、B 两点.
(1)如图 2,当 k=-1 时,若点 B 到经过原点的直线 l 的距离 BE 的长为 3,求点 A 到直线 l 的距离 AD 的长;
(2)如图 3,当 k=- 时,点 M 在第一象限内,若△ABM 是等腰直角三角形,求点
M 的坐标;
(3)当 k 的取值变化时,点 A 随之在 x 轴上运动,将线段 BA 绕点 B 逆时针旋转 90° 得到 BQ,连接 OQ,求 OQ 长的最小值.
24.(10分)先化简,再求值.
,其中x满足.
25.(12分)如图,∠A=30°,点E在射线AB上,且AE=10,动点C在射线AD上,求出当△AEC为等腰三角形时AC的长.
26.因式分解:
(1);
(2)
参考答案
一、选择题(每题4分,共48分)
1、C
【分析】把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AB′,如图,由于AC=12,CB′=5,然后利用勾股定理计算出AB′即可.
【详解】
解:把圆柱沿母线AC剪开后展开,点B展开后的对应点为B′,则蚂蚁爬行的最短路径为AB′,如图,AC=12,CB′=5,
在Rt△ACB′,
所以它爬行的最短路程为13cm.
故选:C.
【点睛】
本题考查了平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.
2、B
【分析】先将原式转化为完全平方公式,再根据非负数的性质得出.进而判断即可.
【详解】∵,
∴,
即,
∴,
∴此三角形为等边三角形,同时也是锐角三角形.
故选:B.
【点睛】
本题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键.
3、A
【分析】根据线段垂直平分线的性质得到DA=DB,根据勾股定理求出BD,得到CD
的长,根据三角形的面积公式计算,得到答案.
【详解】解:∵点D在线段AB的垂直平分线上,
∴DA=DB,
在Rt△BCD中,BC2+CD2=BD2,即42+(8﹣BD)2=BD2,
解得,BD=5,
∴CD=8﹣5=3,
∴△BCD的面积=×CD×BC=×3×4=6,
∵P是BD的中点,
∴S△PBC=S△BCD=3,
故选:A.
【点睛】
本题考查的是线段垂直平分线的性质、直角三角形的性质、勾股定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.
4、A
【分析】根据一次函数y随x的增大而减小可作出判断.
【详解】∵一次函数中,
∴y随x的增大而减小,
又∵和中,

故选:A.
【点睛】
本题考查一次函数的增减性,熟练掌握时,y随x的增大而减小是解题的关键.
5、C
【解析】试题分析:利用数轴得出a+b的符号,进而利用绝对值和二次根式的性质得出即可:
∵由数轴可知,b>0>a,且 |a|>|b|,
∴.
故选C.
考点:;;.
6、C
【分析】根据平行线、垂直平分线、对顶角、轴对称图形的性质,逐个分析,即可得到答案.
【详解】同旁内角互补,则两直线平行,故A正确;
线段垂直平分线上的点到线段两个端点的距离相等,故B正确;
由对顶角可得是相等的角;相等的角无法证明是对等角,故C错误;
角是关于角的角平分线对称的图形,是轴对称图形,故D正确
故选:C.
【点睛】
本题考查了平行线、垂直平分线、对顶角、轴对称图形、角平分线、命题的知识;解题的关键是熟练掌握平行线、垂直平分线、对顶角、轴对称图形、角平分线的性质,从而完成求解.
7、A
【分析】根据提公因式法和公式法因式分解即可.
【详解】①,故①错误;
②,故②正确;
③,故③错误;
④,故④错误.
综上:因式分解结果正确的有1个
故选A.
【点睛】
此题考查的是因式分解,掌握提公因式法和公式法因式分解是解决此题的关键,需要注意的是因式分解要彻底.
8、B
【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】、0、属于有理数;
无理数有:,,…(每两个1之间的0依次增加1个)共3个.
故选:B.
【点睛】
本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;…,等有这样规律的数.
9、A
【分析】如图,根据正方形的性质可得,∠4、∠5、∠6的度数,根据六个角的和等于360°,可得答案.
【详解】如图:
∵三个图形都是正方形
∴∠4=∠5=∠6=90°
∵∠3=30°
∠1+∠2+∠3+∠4+∠5+∠6=360°
∴∠1+∠2=360°-∠3-∠4-∠5-∠6=360°-30°-90°-90°-90°=60°
故选:A
【点睛】
本题主要考查正方形的性质和三角形外角和定理:三角形外角和等于360°,掌握正方形性质和三角形外角和定理是解题的关键.
10、C
【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360,则说明能够进行平面镶嵌;反之则不能.
【详解】解:因为用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,
所以小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正五边形.
故选:C
【点睛】
用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案.
11、C

2022年吉林省辉南县第四中学八年级数学第一学期期末监测试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数24
  • 收藏数0 收藏
  • 顶次数0
  • 上传人1875892****
  • 文件大小867 KB
  • 时间2025-01-28
最近更新