该【导数的几何意义(92) 】是由【165456465】上传分享,文档一共【11】页,该文档可以免费在线阅读,需要了解更多关于【导数的几何意义(92) 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。导数的几何意义
单击此处添加副标题
202X/XX/XX
汇报人姓名
:曲线上两点连线的斜率
3、f (x0)与f (x)之间的关系:
2.导数就是在某一点的瞬时变化率。
2、导函数
导数
1.平均变化率的几何意义
对于简单的曲线,如圆和圆锥曲线,它们的切线是如何定义的?
1
与曲线只有一个交点的直线是否一定是曲线的切线?
2
曲线的切线与直线是否只有一个交点?
3
引入:
思考下面的问题:
问题:复杂曲线的切线
一、切线定义
二、切线的斜率
在点
求曲线C:
处切线的斜率。
先求割线 MN 的斜率为:
L
M
x
y
o
T
N
切线 MT 的斜率为:
即
三、导数的几何意义
曲线y=f(x)在点P(x0 ,f(x0))处的切线方程是:
(2)瞬时速度
(3)瞬时加速度
(1)函数 y=f(x)在点x0处的导数的几何意义,
就是曲线y=f(x)在点P(x0 ,f(x0))处的切线的斜率.
例题讲解
例1:已知曲线y=x2
(1)求在区间[1,2]平均变化率;
(2)求曲线上点(1,1)处切线的斜率;
(3)求曲线在(1,1)处切线的方程
变式:若曲线为x=y2呢
例2
例3
练习:
曲线y=x3与在哪些点的切线的与直线y=3x+1平行。求出这些点来。
导数的几何意义(92) 来自淘豆网m.daumloan.com转载请标明出处.