班级: 小组: 姓名: 学号:
组内评价: 教师评价:
课题:第十一章《全等三角形复习》导学案(1)
【学习目标】
.
,巩固第十一章所学的基本内容.
,加深理解第十一章所学的基本内容,发展能力.
【学习重点和难点】
:知识结构图和基本训练.
:典型例题和综合运用.
【归纳总结,完善认知】
基础知识复习案——(20分钟)
.
两两边一____
两边一对角
____________
____________
三边______________
___边_____________
两角一边对应相等
__________________
一个条件
两个条件
三个条件
探究
三角形
全等的
条件
四、基本训练,掌握双基
(1)能够的两个图形叫做全等形,能够的两个三角形叫做全等三角形.
(2)把两个全等的三角形重合到一起,重合的顶点叫做,重合的边叫做,重合的角叫做.
(3)全等三角形的边相等,全等三角形的角相等.
(4) 对应相等的两个三角形全等(边边边或).
(5)两边和它们的对应相等的两个三角形全等(边角边或).
(6)两角和它们的对应相等的两个三角形全等(角边角或).
(7)两角和其中一角的对应相等的两个三角形全等(角角边或).
(8) 和一条对应相等的两个直角三角形全等(斜边、直角边或).
(9)角的上的点到角的两边的距离相等.
,图中有两对三角形全等,填空:
(1)△CDO≌,其中,CD的对应边是,
DO的对应边是,OC的对应边是;
(2)△ABC≌,∠A的对应角是,
∠B的对应角是,∠ACB的对应角是.
:对的画“√”,错的画“×”.
(1)一边一角对应相等的两个三角形不一定全等. ( )
(2)三角对应相等的两个三角形一定全等. ( )
(3)两边一角对应相等的两个三角形一定全等. ( )
(4)两角一边对应相等的两个三角形一定全等. ( )
(5)三边对应相等的两个三角形一定全等. ( )
(6)两直角边对应相等的两个直角三角形一定全等. ( )
(7)斜边和一条直角边对应相等的两个直角三角形不一定全等. ( )
(8)一边一锐角对应相等的两个直角三角形一定全等. ( )
,AB⊥AC,DC⊥DB,填空:
(1)已知AB=DC,利用可以判定△ABO≌△DCO;
(2)已知AB=DC,∠BAD=∠CDA,利用
可以判△ABD≌△DCA;
(3)已知AC=DB,利用可以判定△ABC≌△DCB;
(4)已知AO=DO,利用可以判定△ABO≌△DCO;
(5)已知AB=DC,BD=CA,利用可以判定△ABD≌△DCA.
: 如图,OA=OC,OB=OD.
求证:AB∥DC.
证明:在△ABO和△CDO中,
∴△ABO≌△CDO( ).
∴∠A= .
∴AB∥DC( 相等,两直线平行).
:
如图,AB∥DC,AE⊥BD,CF⊥BD,BF=DE.
第十一章:全等三角形导学案复习(1) 来自淘豆网m.daumloan.com转载请标明出处.