下载此文档

数值分析4.doc


文档分类:行业资料 | 页数:约6页 举报非法文档有奖
1/6
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/6 下载此文档
文档列表 文档介绍
关于牛顿迭代法的课程设计实验指导
非线性方程(或方程组)问题可以描述为求 x 使得f(x) = 0。在求解非线性方程的方法中,牛顿迭代法是求非线性方程(非线性方程组)数值解的一种重要的方法。牛顿是微积分创立者之一,微积分理论本质上是立足于对世界的这种认识:很多物理规律在微观上是线性的。近几百年来,这种局部线性化方法取得了辉煌成功,大到行星轨道计算,小到机械部件设计。牛顿迭代法正是将局部线性化的方法用于求解方程。
一、牛顿迭代法及其收敛速度
牛顿迭代法又称为牛顿-拉夫逊方法(Newton-Raphson method),是一种在实数域和复数域上通过迭代计算求出非线性方程的数值解方法。方法的基本思路是利用一个根的猜测值x0做初始近似值,使用函数f(x)在x0处的泰勒级数展式的前两项做为函数f(x)的近似表达式。由于该表达式是一个线性函数,通过线性表达式替代方程f(x) = 0中的f(x)求得近似解 y
x
O x* x1 x0
x1。即将方程f(x) = 0在x0处局部线性化计算出近似解x1,重复这一过程,将方程f(x) = 0在x1处局部线性化计算出x2,求得近似解x2,……。详细叙述如下:假设方程的解x*在x0附近(x0是方程解x*的近似),函数f(x)在点x0处的局部线化表达式为
由此得一次方程
图1 牛顿迭代法示意图
求解,得
如图1所示,x1比x0更接近于x*。该方法的几何意义是:用曲线上某点(x0,y0)的切线代替曲线,以该切线与x轴的交点(x1,0)作为曲线与x轴的交点(x*,0)的近似(所以牛顿迭代法又称为切线法)。设xn是方程解x*的近似,迭代格式
( n = 0,1,2,……)
就是著名的牛顿迭代公式,通过迭代计算实现逐次逼近方程的解。牛顿迭代法的最大优点是收敛速度快,具有二阶收敛。以著名的平方根算法为例,说明二阶收敛速度的意义。
,求等价于求方程f(x) = x2 – 2 = 0的解。由于。应用牛顿迭代法,得迭代计算格式
,(n = 0,1,2,……)
取x0= ,迭代计算3次的数据列表如下
表1 牛顿迭代法数值实验
迭代次数
近似值
15位有效数
误差
0


--002
1


-005
2


-009
3


--016
其中,第三栏15位有效数是利用MATLAB的命令sqrt(2)计算结果。观察表中数据,第一次迭代数据准确到小数点后四位,第二次迭代数据准确到小数点后八位,
……。二阶收敛速度可解释为,每迭代一次,近似值的有效数位以二倍速度递增。对于计算任意正数C的平方根,牛顿迭代法计算同样具有快速逼近的性质。
二、牛顿迭代法的收敛性
牛顿迭代法在使用受条件限制,这个限制就是通常所说的牛顿迭代法的局部收敛性。
定理假设f(x)在x*的某邻域内具有连续的二阶导数,且设f(x*)=0,,则对充分靠近x*的初始值x0,牛顿迭代法产生的序列{xn}收敛于x*。

数值分析4 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数6
  • 收藏数0 收藏
  • 顶次数0
  • 上传人JZZQ12
  • 文件大小142 KB
  • 时间2018-03-27
最近更新