数学学案编写吴栋审核朱海滨高一年级
课题:
三角函数的诱导公式
课型:新授
课时1
学习目标: ,能理解复述“函数名不变,符号看象限”
重点:
诱导公式的推导及其应用, “函数名不变,符号看象限”的具体使用
难点:
教学过程
教学内容
设计意图
我们前面学习过诱导公式一,?
文字叙述:终边相同的角的同名三角函数的值相等.
它在转化任意角的三角函数中所起的作用是:
把求任意角的三角函数值的问题,转化为求0°~360°(或0~2π)之间角的三角函数值的问题.
复习了公式一那接下来我们研究一下,三角函数还有什么其他的规律
探讨1 形如+α的三角函数值与α的三角函数值之间的关系
首先请同学们画出单位圆,并画出α与+α,并观察他们之间的关系
设α终边与单位圆交点坐标为p(x,y),则+α终边与单位圆交点坐标为
p'(-x,-y),根据三角函数的定义我们求一下上述两个角的各三角函数值
从而得到公式二
跟踪训练(1)求下列三角函数值
sin 210° cos225° tan
探讨2 形如-α的三角函数值与α的三角函数值之间的关系.
同样画出单位圆,并画出-α与α,并观察他们之间的关系
同样求出下列各三角函数值
上述即为公式三跟踪训练(2)求下列三角函数值
sin(-30°) cos(-210°) tan (- )
探讨3 形如π-α,α的三角函数值与α的三角函数值之间的关系.
经过类似的推导我们得
三角函数诱导公式(一) 来自淘豆网m.daumloan.com转载请标明出处.