经济学上的“海盗分金”模型
经济学上有个“海盗分金”模型,是说5个海盗抢得100枚金币,他们按抽签的顺序依次提方案:首先由1号提出分配方案,然后5人表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,依此类推。
海盗,大家听说过吧。这是一帮亡命之徒,在海上抢人钱财,夺人性命,干的是刀上舔血的营生。在我们的印象中,他们一般都瞎一只眼,用条黑布或者讲究点的用个黑皮眼罩把坏眼遮上。他们还有在地下埋宝的好习惯,而且总要画上一张藏宝图,以方便后人掘取。不过大家是否知道,他们是世界上最民主的团体。参加海盗的都是桀骜不驯的汉子,是不愿听人命令的,船上平时一切事都由投票解决。船长的唯一特权,是有自己的一套餐具——可是在他不用时,其他海盗是可以借来用的。船上的唯一惩罚,就是被丢到海里去喂鱼。
现在船上有5个海盗,要分抢来的100枚金币。自然,这样的问题他们是由投票来解决的。投票的规则如前面所说:首先由1号提出分配方案,然后5人表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,依此类推。
我们先要对海盗们作一些假设。1) 每个海盗的凶猛性都不同,而且所有海盗都知道别人的凶猛性,也就是说,每个海盗都知道自己和别人在这个提出方案的序列中的位置。另外,每个海盗的数学和逻辑都很好,而且很理智。最后,海盗间私底下的交易是不存在的,因为海盗除了自己谁都不相信。2) 一枚金币是不能被分割的,不可以你半枚我半枚。3) 每个海盗当然不愿意自己被丢到海里去喂鱼,这是最重要的。4) 每个海盗当然希望自己能得到尽可能多的金币。5) 每个海盗都是现实主义者,如果在一个方案中他得到了1枚金币,而下一个方案中,他有两种可能,一种得到许多金币,一种得不到金币,他会同意目前这个方案,而不会有侥幸心理。总而言之,他们相信二鸟在林,不如一鸟在手。6) 最后,在不损害自己利益的前提下,他会尽可能投票让自己的同伴喂鱼。
要解决这类问题,我们总是从最后的情形向前推,这样我们就知道在最后这一步中什么是好的和坏的决定。然后运用这个知识,我们就可以得到最后第二步应该作怎样的决定,等等。要是直接就从开始入手解决问题,我们就很容易被这样的问题挡住去路:“要是我作这样的决定,下面一个海盗会怎么做?”
从后向前推,如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。所以,4号惟有支持3号才能保命。
3号知道这一点,就会提出“100,0,0”的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。
不过,2号推知3号的方案,就会提出“98,0,1,1”的方案,即放弃3号,而给予4号和5号各一枚金币。由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。这样,2号将拿走98枚金币。
同样,2号的方案也会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。这无疑是1号能够获取最大收益的方案
海盗分金 来自淘豆网m.daumloan.com转载请标明出处.