大词汇连续汉语语音的MLP声学特征的研究.doc大词汇连续汉语语音的MLP声学特征的研究
关键词:多层感知器;差异特征;隐马尔可夫;高斯混合模型
对语音信号特征参数的研究是建立良好的语音识别系统的基础与关键。在过去的研究中,语音识别系统的特征提取成分主要包括频谱包络预测,特别是经过某些简单变化后的特征,目前前端大部分是基于短时轨迹(约10ms)信号分析的美尔倒谱(MFC)或是感知线性预测(PLP)。但这些传统的短时特征参数存在着对信号变化过于敏感,不能反映连续帧之间的相关特性,区分性差等方面的不足。近年来,国外很多语音研究机构在语音信号的特征提取、声学建模方面引入了神经网络ANN,其中由Berkeley国际计算机学院(ICSI)提出用基于MLPs的特征取代传统特征,系统的识别率得到了明显改善[1-3]。基于MLPs特征的差异性的优势和GMM/HMM模型的成熟性,本文提出将变换后的MLPs差异特征后验概率看作是GMHMM的输入向量,重新构建GMHMM模型。实验结果表明MLPs特征具有更好的特性,LVCSR的识别率得到了明显的改善。
1 基于MLP的差异声学特征
为弥补了来自言语感知和倒谱的短时分析的不足,获取时序相关联的多帧语音信息(即音素信息),文本引入了神经网络ANN的MLP,以提取基于非短时轨迹的非传统特征。本文采用的MLP特征为HATs和TANDEM两种。
长时HATs特征参数
HATs特征基于人对不同频带的感觉不同,HATs特征提取将由两级MLP实现[4-5],第一级由15个MLP即将关键频带数分为15个,第二级由1个MLP构成。HATs的基本实现步骤:
1)依关键频带,分别计算每个短时窗(10ms)对应的关键频带的能量的log值(即为短时频段能量参数)。
2)。串联方法为将前25帧、后25帧和当前帧同频段的能量参数相串联(25+25+1=51),作为该关键频带的MLP的51个输入单元。即第一级的每个MLP都具有51个输入端。每一个MLP都是为了证实当前帧为某个音素的后验概率P(Pj/Xt)。因此,在语音识别系统中,每一个MLP的输出单元代表了一个音素。由于这些MLP为差别性音素提供了音素后验,所产生的特征为语音识别提供了音素差别性能力。
3)采用softmax函数将每一个MLP的概率输出汇总为1,实现归一化。
xij是来自隐藏单元i的输入;oid函数限止其输出值在0-1之间。
因为每个关键频带对不同的音素反映不同,所以每个第一级的输出都提供了音素后验概率。第二级的目的在于接合所有音素后验概率,对当前帧所属音素的认定作最后的决策。从不同的实验表明,针对于LVCSR最成功的做法是采用第一级隐藏层的结果作为第二级的输入。因为第一级softmax使所有的输出都转化为同一级别,这样就削弱甚至是抹杀了第一阶段涉及所有的MLP的鉴别力。由于第二级的输入是源自第一阶段的隐藏层,即隐藏激活hidden activation TRAPS (HATS)。第二级的输入单元的数目为15×h,h是第一级每个MLP的隐藏单元数目,本文采用60个隐藏单元。最后,从第二级MLP计算出音素后验概率。由于系统采用71个音素[10],所以HATs的输出是一个71维的音素后验概率。二级MLP的H
大词汇连续汉语语音的MLP声学特征的研究 来自淘豆网m.daumloan.com转载请标明出处.