第二部分题型研究
题型四新定义与阅读理解题
类型二新概念学习型
针对演练
1. 若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且|x1|+|x2|=2|k|(k是整数),则称方程x2+bx+c=0为“偶系二次方程”.如方程x2-6x-27=0,x2-2x-8=0,x2+3x-=0,x2+6x-27=0, x2+4x+4=0都是“偶系二次方程”.
(1)判断方程x2+x-12=0是否是“偶系二次方程”,并说明理由;
(2)对于任意一个整数b,是否存在实数c,使得关于x的方程x2+bx+c=0是“偶系二次方程”,并说明理由.
2. 设二次函数y1,y2的图象的顶点分别为(a,b)、(c,d),当a=-c,b=2d,且开口方向相同时,则称y1是y2的“反倍顶二次函数”.
(1)请写出二次函数y=x2+x+1的一个“反倍顶二次函数”;
(2)已知关于x的二次函数y1=x2+nx和二次函数y2=nx2+x;函数y1+y2恰是y1-y2的“反倍顶二次函数”,求n.
3. 函数y=和y=-(k≠0)的图象关于y轴对称,我们定义函数y=和y=-(k≠0)相互为“影像”函数:
(1)请写出函数y=2x-3的“影像”函数:________;
(2)函数________的“影像”函数是y=x2-3x-5;
(3)若一条直线与一对“影像”函数y=(x>0)和y=-(x<0)的图象分别交于点A、B、C(点A、B在第一象限),如图,如果CB∶BA=1∶2,点C在函数y=-(x<0)的“影像”函数上的对应点的横坐标是1,求点B的坐标.
第3题图
4. 如图,在平面直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1,又将线段OP1按逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2,如此下去,得到线段OP3,OP4…,OPn(为正整数).
(1)求点P3的坐标;
(2)我们规定:把点Pn(xn,yn)(n=0,1,2,3…)的横坐标xn、纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称为点Pn的“绝对坐标”,根据图中Pn的分布规律,求出点Pn的“绝对坐标”.
第4题图
考向2) 几何类(杭州:;台州:,2015、;绍兴:,,)
针对训练
1. (2017绍兴)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.
(1)如图①,等腰直角四边形ABCD,AB=BC,∠ABC=90°.
①若AB=CD=1,AB∥CD,求对角线BD的长;
②若AC⊥BD,求证:AD=CD.
(2)如图②,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,
过点P作直线分别交边AD,BC于点E,F,.
第1题图
2. 阅读下面的材料:
如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”,如图①,▱ABEF即为△ABC的“友好平行四边形”.
请解决下列问题:
(1)仿照以上叙述,说明什么是一个三角形的“友好矩形”;
(2)若△ABC是钝角三角形,则△ABC显然只有一个“友好矩形”,若△ABC是直角三角形,其“友好矩形”有______个;
(3)若△ABC是锐角三角形,且AB<AC<BC,如图②,请画出△ABC的所有“友好矩形”,指出其中周长最小的“友好矩形”,并说明理由.
第2题图)
3. (2017常州)如图①,在四边形ABCD中,如果对角线AC和BD相交并且相等,那么我们把这样的四边形称为等角线四边形.
(1)①在“平行四边形、矩形、菱形”中,________一定是等角线四边形(填写图形名称);
②若M、N、P、Q分别是等角线四边形ABCD四边AB、BC、CD、DA的中点,当对角线AC、BD还需要满足________时,四边形MNPQ是正方形;
(2)如图②,已知△ABC中,∠ABC=90°,AB=4,BC=3,D为平面内一点.
①若四边形ABCD是等角线四边形,且AD=BD,则四边形ABCD的面积是________;
②设点E是以C为圆心,1为半径的圆上的动点,若四边形ABED是等角线四边形,写出四边形ABED面积的最大值,并说明理由.
第3题图
4. (2017黄石)在现实生活中,我们经常会看到许多“标准”的矩形,如我们的课本封面、A4的打印纸等,其实这些矩形的长与宽之比都为∶1,我们不
用友BI技术解决方案 来自淘豆网m.daumloan.com转载请标明出处.