猜想型试题
,已知为等边三角形,、、分别在边、、上,且也是等边三角形.
(1)除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的;
(2)你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程.
分析:本题要求学生在掌握全等三角形的概念和性质的基础上,灵活运用三角形全等的判定及性质进行结论猜想。求解这类问题,不能随意乱猜,要结合题目给出的条件,根据图形直观的找出结论后再进行合理的推理论证。
解:(1)图中还有相等的线段是:AE=BF=CD,AF=BD=CE,
事实上,∵△ABC与△DEF都是等边三角形,
∴∠A=∠B=∠C=60°,∠EDF=∠DEF=∠EFD=60°,DE=EF=FD,
又∵∠CED+∠AEF=120°,∠CDE+∠CED=120°
∴∠AEF=∠CDE,同理,得∠CDE=∠BFD,
∴△AEF≌△BFD≌△CDE(AAS),所以AE=BF=CD,AF=BD=CE。
(2)线段AE、BF、CD它们绕△ABC的内心按顺时针(或按逆时针)方向旋转120°,可互相得到,线段AF、BD、CE它们绕△ABC的内心按顺时针(或按逆时针)方向旋转120°,可互相得到。
说明:
,它立意考查学生的观察、分析问题的能力.
,,考查了学生的能力,,又有抽象思维的特点,所以成为近几年中考试题的考点及热点问题。
练习一
:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF。请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可)。
(1)连结____________;
(2)猜想:______=______;
(3)证明:
-1-2(1),10-1-2(2),四边形ABCD是正方形,M是AB延长线上一点。直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F。
⑴如图10-1-2(1),当点E在AB边的中点位置时:
①通过测量DE,EF的长度,猜想DE与EF满足的数量关系是;
②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是;
③请证明你的上述两猜想。
⑵如图10-1-2(2),当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时DE与EF有怎样的数量关系。
,是等边三角形,、是以为直径的半圆的两个三等分点,、分别交于点、,试判断点、分别位于所在线段的什么位置?并证明你的结论(证明一种情况即可)
,已知平行四边形及四边形外一直线,四个顶点到直线的距离分别为.
(1)观察图形,猜想得满足怎样的关系式?证明你的结论.
(2)现将向上平移,你得到的结论还一定成立吗?请分情况写出你的结论.
,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.
(1)线段AF和BE有怎样的大小关系?请证明你的结论;
(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由;
(3)若将图a中的△ABC绕点C旋转一定的角度,请你画山一个变换后的图形c(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;
(4)根据以上证明、说理、画图,归纳你的发现.
(为常数,△=)的图象与轴相交于A,B两点,且A,B两点间的距离为,例如,通过研究其中一个函数及图象(如图),可得出表中第2行的相交数据。
△
-5
6
1
2
3
1
-
-2
-2
3
⑴在表内的空格中填上正确的数;
⑵根据上述表内d与△的值,猜想它们之间有什么关系?再举一个符合条件的二次函数,验证你的猜想;
⑶对于函数:
(为常数,△=)证明你的猜想。
分析:⑴用求根公式进行“两根差“的运算,也可以得到相应猜想的证明;
⑵无论是先用⑶的证明,还是先用⑴的证明,只要两种证明都正确。
解:⑴第一行;
第三行,△=9,;
⑵猜想:△
例如:中;;由得
,∴△…
⑶证明。令,得,∵△>0
设的两根为,
则+,
说明:
这是一道设计新颖的猜想题目,它不仅考查学生的分析,观察能力,而且还
中考数学猜想型试题及解答 来自淘豆网m.daumloan.com转载请标明出处.