下载此文档

新能源课件(冀教版小学科学六年级上册课件).ppt


文档分类:幼儿/小学教育 | 页数:约14页 举报非法文档有奖
1/14
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/14 下载此文档
文档列表 文档介绍
十字相乘法进行因式分解-掌门1对1
学生姓名:刘家艺
【基础知识精讲】
(1)理解二次三项式的意义;
(2)理解十字相乘法的根据;
(3)能用十字相乘法分解二次三项式;
(4)重点是掌握十字相乘法,难点是首项系数不为1的二次三项式的十字相乘法.
【重点难点解析】

多项式,称为字母x的二次三项式,其中称为二次项,bx为一次项,,和都是关于x的二次三项式.
在多项式中,如果把y看作常数,就是关于x的二次三项式;如果把x看作常数,就是关于y的二次三项式.
在多项式中,把ab看作一个整体,即,,多项式,把x+y看作一个整体,就是关于x+y的二次三项式.
十字相乘法是适用于二次三项式的因式分解的方法.

利用十字相乘法分解因式,实质上是逆用(ax+b)(cx+d):
(1)对于二次项系数为1的二次三项式,如果能把常数项q分解成两个因数a,b的积,并且a+b为一次项系数p,那么它就可以运用公式
“拆常数项,凑一次项”.公式中的x可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.
(2)对于二次项系数不是1的二次三项式(a,b,c都是整数且a≠0)来说,如果存在四个整数,使,,且,
那么它的特征是“拆两头,凑中间”,这里要确定四个常数,分析和尝试都要比首项系数是1的情况复杂,因此,一般要借助“画十字交叉线”,使符号问题简单化,当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,,还要注意避免以下两种错误出现:一是没有认真地验证交叉相乘的两个积的和是否等于一次项系数;:

多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”.
【典型热点考题】
例1 把下列各式分解因式:
(1);(2).
点悟:(1)常数项-15可分为3 ×(-5),且3+(-5)=-2恰为一次项系数;
(2)将y看作常数,转化为关于x的二次三项式,常数项可分为(-2y)(-3y),而(-2y)+(-3y)=(-5y)恰为一次项系数.
解:(1);
(2).
例2 把下列各式分解因式:
(1);(2).
点悟:我们要把多项式分解成形如的形式,这里,而.
解:(1);
(2).
点拨:二次项系数不等于1的二次三项式应用十字相乘法分解时,二次项系数的分解和常数项的分解随机性较大,往往要试验多次,这是用十字相乘法分解的难点,要适当增加练习,积累经验,才能提高速度和准确性.
例3 把下列各式分解因式:
(1);
(2);
(3).
点悟:(1)把看作一整体,从而转化为关于的二次三项式;
(2)提取公因式(x+y)后,原式可转化为关于(x+y)的二次三项式;
(3)以为整体,转化为关于的二次三项式.
解:(1)
=(x+1)(x-1)(x+3)(x-3).
(2)
=(x+y)[(x+y)-1][7(x+y)+2]
=(x+y)(x+y-1)(7x+7y+2).
(3)
点拨:要深刻理解换元的思想,这可以帮助我们及时、准确地发现多项式中究竟把哪一个看成整体,才能构成二次三项式,,如能分解,要分解到不能再分解为止.
因式分解之十字相乘法专项练习题
(1) a2-7a+6; (2)8x2+6x-35;
(3)18x2-21x+5; (4) 20-9y-20y2;
(5)2x2+3x+1; (6)2y2+y-6;
(7)6x2-13x+6; (8)3a2-7a-6;
(9)6x2-11x+3; (10)4m2+8m+3;
(11)10x2-21x+2; (12)8m2-22m+15;
(13)4n2+4n-15; (14)6a2+a-35;
(15)5x2-8x-13; (

新能源课件(冀教版小学科学六年级上册课件) 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数14
  • 收藏数0 收藏
  • 顶次数0
  • 上传人wyj15108451
  • 文件大小851 KB
  • 时间2018-07-22
最近更新