祖暅原理
与柱体、椎体、球体的体积
gèng
1 刘徽
刘徽首先证明了《九章算术》中的球体积公式是不正确的,并在《九章算术》“开立圆术”注文中指出了一条推算球体积公式的正确途径。
刘徽创造了一个新的立体图形,他称之为“牟合方盖”,并指出:一旦算出牟合方盖的体积,球体积公式也就唾手可得。在一立方体内作两个互相垂直的内切圆柱。这两个圆柱体相交的部分,就是刘徽所说的“牟合方盖”。牟合方盖恰好把立方体的内切球包含在内并且同它相切。如果用同一个水平面去截它们,就得到一个圆(球的截面),和它的外切正方形(牟合方盖的截面)。
中国数学史
刘徽虽然没有推证出球体积公式, 但他所创用的特殊形式的不可分量方法,成为后来祖冲之父子在球体积问题上取得突破的先导。
牟合方盖
祖冲之(公元429-500)
刘徽(生于公元250左右)
中国数学史
祖冲之(公元429-500,如图)活跃于南朝宋、齐两代,出生于历法世家,本人做过南徐州(今镇江)从事史和公府参军,都是地位不高的小官,但他却成为历代为数很少能名列正史的数学家之一。祖冲之在公元462年创制了一部历法《大明历》,这在当时是最先进的历法.
也就是说,祖冲之算出了圆周率数值的上下限:
“祖冲之更开密法,以圆径一亿为一丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,肭数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈肭二限之间”。
祖冲之关于圆周率的贡献记载在《隋书》中,《隋书﹒律历志》说:
字景烁,又名祖暅之,是祖冲之的儿子,自小对数学有浓厚的兴趣,经常与父亲一起钻研数学问题。祖氏父子在数学和天文学上都有杰出的贡献。
祖暅修补、编辑了祖冲之的《缀术》。他运用祖暅原理十分巧妙的推导了球的体积公式。他在数学上的成就,除了父亲对他的影响,和他自己后天的努力是分不开的。
祖暅原理的原文是“幂势既同,则积不容异”,“幂”即面积,“势”即高。意思是:两个等高的几何体,如果与底面等距离的截面面积总相等。那么这两个几何体的体积相等。
“祖暅原理”在17世纪由意大利数学家卡瓦列里重新发现,但比祖暅晚一千余年。
祖暅
公元五世纪末
祖暅原理:
大约公元五世纪,我国古代数学家祖暅在实践的基础上,总结出一个重要的体积计算原理:
夹在两个平行平面间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等。
解释
棱柱、圆柱的截面有什么性质?
一、棱柱、圆柱的体积
设棱柱与圆柱的底面积都为S、高都为h,根据祖暅原理,那么它们的体积相等,但等于多少呢?为此还必须引进一个底面积为S、高为h的长方体,而这样的长方体、棱柱、圆柱的体积都相等.
平行于底面的截面与底面相等.
二、棱锥、圆锥的体积
一、棱柱、圆柱的体积
图1 用祖暅原理证明球体积公式
三、球的体积
我们回忆一下祖暅原理(请一位学生叙述原理的内容),?先观察与半径为R的半球底面平行,且与底面距离为l的截面面积S=πR2--πl2可能作一圆环面积,其中圆环的大圆半径为R对任意截面不变,故底面半径为R的圆柱满足;小圆半径要等于l,轴截面为等腰直角三角形的倒圆锥具有这性质,这就启发我们用祖暅原理可以这样推导:
取一个底面半径和高都等于R的圆柱,从圆柱中挖去一个以圆柱的上底面为底面、下底面圆心为顶点的圆锥,把所得的几何体和半球放在同一个平面α上(图2-59),因为圆柱的高等于R,所以这个几何体和半球都夹在两个平行平面之间.
2019高考数学精选01祖暅原理公开课精盐件 来自淘豆网m.daumloan.com转载请标明出处.