下载此文档

二元一次方程组和三元一次方程组.doc


文档分类:中学教育 | 页数:约12页 举报非法文档有奖
1/12
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/12 下载此文档
文档列表 文档介绍
二元一次方程组和三元一次方程组
    :
    ,会用加减法解二元一次方程组;
    ,解三元一次方程组的基本思想和解法。
    :
 。

    :
,领会多元方程组向一元方程组转化(化归)的思想。
,渗透换元的思想。
,进一步领会方程的思想。
    :
,加减消元法解二元一次方程组及简单的三元一次方程组的训练及选用合理、简捷的方法解方程组,培养运算能力。
,明确二元一次方程组及三元一次方程组解法的主要思路是"消元",从而促成未知向已知的转化,培养观察能力和发展逻辑思维能力。
,培养运用转化思想去解决问题,发展思维能力。
    :
,是解二元一次方程组的基本方法之一。

:
(1)先选择好准备消去哪一个未知数,一般在两个未知数中选择在两个方程中系数较为简单的一个。
(2)如果准备消去的未知数在两个方程中的系数的绝对值相等,就直接用加减法消去这个未知数,如果系数的绝对值不相等就找出这个未知数在两个方程里系数的最小公倍数,然后把一个方程或两个方程的两边乘以适当的数,使被消去的未知数系数的绝对值相等。
(3)把所得的两个方程的两边分别相加或相减,消去这个未知数,得出另一个未知数的一元一次方程。
(4)解这个一元一次方程,求得一个未知数的值。
(5)用这个未知数的值代入方程组的任何一个方程,求出另一个未知数的值。
(6)把所求的两个未知数的值写在一起,就是方程组的解,方程组的解一般写成形式。
:
(1)解三元一次方程组的基本思路是化三“元”为二“元”,再化二“元”为一“元”,即利用代入法和加减法消“元”逐步求解。
(2)解三元一次方程组,除了要考虑好选择哪种方法和决定消去哪一个未知数之外,关键的一步是由三“元”化为二“元”,特别注意两次消元过程中,方程组中每个方程至少要用到1次,并且(1),(2),(3)3个方程中先由哪两个方程消某一个未知数,再由哪两个方程(一个是用过的)仍然消这个未知数,防止第一次消去y,第二次消去z或x,仍然得到三元一次方程组,没有达到消“元”的目的。例如:
解方程组

解:(1)-(2), 得 4y-z=1......(4)
(3)-(1),得x+y=3.....(5)
解联立(4),(5)所得的方程组
由于上面2次消元的未知数不同,第一次消去“x”,第二次消去“y”,故得(4),(5)联立的方程组。虽说只有2个方程,但其含有3个未知数x, y, z。它仍然是三元一次方程组,这样运算就误入歧途。


分析:此方程组的两个方程中y的系数互为相反数,所以可把两个方程相加,消去y,解出x的值;又发现两个方程中x的系数相等,所以可把两个方程相减,消去x,解出y的值。
解法一:(1)+(2),得6x=18, ∴ x=3
把x=3代入(2),得9-2y=5, ∴ y=2

解法二:(1)-(2),得4y=8, ∴ y=2
把y=2代入(2),得 3x-2×2=5, ∴ x=3



分析:此方程组中两个未知数的系数均不成整数倍,所以选择系数较简单的未知数消元。将(1)×4, (2)×3,使得x的系数相等,再相减消去x。
解:(1)×4,得12x+20y=100......(3)
(2)×3得 12x+9y=45.....(4)
(3)-(4),得11y=55 ∴ y=5
把y=5代入(2),得 4x+3×5=15, ∴ x=0


(1) (2)
分析:此题中的方程组比较复杂,应先化简,然后再观察系数的特点,利用加减消元求解。
(1)解:化简方程组,得
(3)-(4)×14,得2x=-1,∴ x=-
把 x=- 代入(4),得2×(- )+3y=3,∴ y=

(2)解:化简方程组,得

(3)×2+(4)×3,得19x=38,∴ x=2
把x=2代入(4),得y=2

二元一次方程组和三元一次方程组 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数12
  • 收藏数0 收藏
  • 顶次数0
  • 上传人小枷
  • 文件大小107 KB
  • 时间2018-09-22