下载此文档

衡水中学2011届高三平面解析几何综合题学生版.doc


文档分类:中学教育 | 页数:约15页 举报非法文档有奖
1/15
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/15 下载此文档
文档列表 文档介绍
衡水中学2011届高三平面解析几何综合题
1. (江苏07—08高三调研)已知过点A(0,1),且方向向量为
,相交于M、N两点.
(1)求实数的取值范围;
(2)求证:;
(3)若O为坐标原点,且.
2. (09·广东理)已知曲线与直线交于两点和,(含边界),且点与点和点均不重合.
(1)若点是线段的中点,试求线段的中点的轨迹方程;
(2)若曲线与有公共点,试求的最小值.
3. (09·安徽理)点在椭圆上,
直线与直线垂直,
O为坐标原点,直线OP的倾斜角为,直线的倾斜角为.
(I)证明: 点是椭圆与直线的唯一交点;
(II)证明:构成等比数列.
4. (09·湖北理)过抛物线的对称轴上一点的直线与抛物线相交于M、N两点,自M、N向直线作垂线,垂足分别为、。
(Ⅰ)当时,求证:⊥;
(Ⅱ)记、、的面积分别为、、,是否存在,使得对任意的,都有成立。若存在,求出的值;若不存在,说明理由。
5. (09·宁夏海南理)已知椭圆C的中心为直角坐标系xOy的原点,焦点在s轴上,它的一个顶点到两个焦点的距离分别是7和1.
(Ⅰ)求椭圆C的方程;
6. (2010·浙江理)已知m>1,直线,椭圆,分别为椭圆的左、右焦点
.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆交于两点,,,求实数的取值范围.
7. (2010·北京理)m在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。
8. (2010·安徽理)
已知椭圆经过点,对称轴为坐标轴,焦点在轴上,离心率.
(Ⅰ)求椭圆的方程;(Ⅱ)求的角平分线所在直线的方程;
(Ⅲ)在椭圆上是否存在关于直线对称的相异两点?若存在,请找出;若不存在,说明理由.
9. 设上的两点,
已知,,若且椭圆的离心率短轴长为2,为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;
(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由
10. 设分别是椭圆C:的左右焦点
(1)设椭圆C上的点到两点距离之和等于4,写出椭圆C的方程和焦点坐标
(2)设K是(1)中所得椭圆上的动点,求线段的中点B的轨迹方程;
(3)设点P是椭圆C 上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM ,PN的斜率都存在,并记为  试探究的值是否与点P及直线L有关,并证明你的结论.

11. 已知点A(-1,0),B(1,-1)和抛物线.,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图.
(I)证明: 为定值;
第11题
(II)若△POM的面积为,求向量与的夹角;
(Ⅲ) 证明直线PQ恒过一个定点.



12. 已知椭圆C:(.
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点的直线与椭圆C交于不同的两点,且

衡水中学2011届高三平面解析几何综合题学生版 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数15
  • 收藏数0 收藏
  • 顶次数0
  • 上传人追风少年
  • 文件大小0 KB
  • 时间2011-09-04