六年级奥数100题
。这里有一道著名物理学家爱因斯坦编的问题:在你面前有一条长长的阶梯。如果你每步跨2 阶,那么最后剩下1 阶;如果你每步跨3 阶,那么最后剩2 阶;如果你每步跨5 阶,那么最后剩4 阶;如果你每步跨6 阶,那么最后剩5 阶;只有当你每步跨7 阶时,最后才正好走完,一阶也不剩。
请你算一算,这条阶梯到底有多少阶?
分析与解:分析能力较强的同学可以看出,所求的阶梯数应比2、3、5、6 的公倍数(即30 的倍数)小1,并且是7 的倍数。因此只需从29、59、89、119、……中找7 的倍数就可以了。很快可以得到答案为119 阶。
2.
明明和华华各有铅笔若干支,两个人的铅笔合起来共72 支。现在华华从自己所有的铅笔中,取出明明所有的支数送给明明,然后明明又从自己现在所有的铅笔中,取出华华现有的支数送给华华,接着华华又从自己现在所有的铅笔中,取出明明现在所有的支数送给明明。这时,明明手中的铅笔支数正好是华华手中铅笔支数的8 倍,那么明明和华华最初各有铅笔多少支?
分析与解:有些数学题,如果顺着思考不易找到答案,往往从后往前想比较方便,即从已知条件倒推回去,找出答案来。
根据这道题的已知条件可知,无论明明取多少支铅笔给华华,还是华华取多少支铅笔给明明,两人所有的铅笔总支数(72 支)是不变的;又知道最后明明手中铅笔的支数是华华手中铅笔支数的8 倍。这样我们可以求出最后两人手中铅笔的支数。
华华最后手中铅笔的支数是:72÷(8+1)=8(支)
明明最后手中铅笔的支数是:8×8=64(支)
接着倒推回去,就可以求出两人最初各有铅笔多少支了。
答案是:明明最初有铅笔26 支,华华最初有铅笔46 支。
3.
六年级举行中国象棋比赛,共有12 人报名参加比赛。根据比赛规则,每个人都要与其他人各赛一盘,那么这次象棋比赛一共要赛多少盘?
分析与解:一共要赛66 盘。
要想得出正确答案,我们可以从简单的想起,看看有什么规律。
假如2 个人(A、B)参赛,那只赛1 盘就可以了;假如3 个人(A、B、C)
参赛,那么A—B、A—C、B—C 要赛3 盘;假如4 个人参赛,要赛6 盘,……
于是我们可以发现:2 人参赛,要赛1 盘,即1;3 人参赛,要赛3 盘,即1+2;4 个参赛,要赛6 盘,即1+2+3;5 人参赛,要赛10 盘,即1+2+3+4;……
那么,12 人参赛就要赛1+2+3+……+11=66 盘。
我们还可以这样想:这12 个人,每个人都要与另外11 个人各赛1 盘,共11×12=132(盘),但计算这总盘数时把每人的参赛盘数都重复算了一次,(如A—B 赛一盘,B—A 又算了一盘),所以实际一共要赛132÷2=66(盘)。
4.
请你把1~8 这八个数分别填入下图所示正方体顶点的圆圈里,使每个面的4 个角上的数之和都相等。
分析与解:做这种填数游戏,有两种方法,一种是“笨”方法,即凑数的方法。分别用这8 个数去试,这种方法可行,但很费事。另一种方法是用分析、计算的方法。这道题可以分析、计算如下:在计算各个面上4 个数的和时,顶点上的数总是分属3 个不同的面,这样,每个顶点上的数都被重复计算了3 次。因此,各个面上4 个数的和为1~8 这8 个数的和的3 倍,即(1+2+3+.+8)×3= 个面,也就是每个面上的四个数的和应是108÷6= 应是我们填数的标准。
如果在前面上填入1、7、2、8(如图31),那么右侧面上已有2、8,其余两顶点只能填3、,答案如图31 所示。
5.
晚饭后,爸爸、妈妈和小红三个人决定下一盘跳棋。打开装棋子的盒子前,爸爸忽然用大手捂着盒子对小红说:“小红,爸爸给你出一道跳棋子的题,看你会不会做?”小红毫不犹豫地说:“行,您出吧?”“好,你听着:这盒跳棋有红、绿、蓝色棋子各15 个,你闭着眼睛往外拿,每次只能拿1个棋子,问你至少拿几次才能保证拿出的棋子中有3 个是同一颜色的?”
听完题后,小红陷入了沉思。同学们,你们会做这道题吗?
分析与解:至少拿7 次,才能保证其中有3 个棋子同一颜色。
我们可以这样想:按最坏的情况,小红每次拿出的棋子颜色都不一样,但从第4 次开始,将有2 个棋子是同一颜色。到第6 次,三种颜色的棋子各有2 个。当第7 次取出棋子时,不管是什么颜色,先取出的6 个棋子中必有2 个与它同色,即出现3 个棋子同一颜色的现象。
同学们,你们能从这道题中发现这类问题的规律吗?如果要求有4 个棋子同一颜色,至少
六年级奥数100题 来自淘豆网m.daumloan.com转载请标明出处.