算法第7课时进位制
教学要求:了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换;学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除k去余法,并理解其中的数学规律.
教学重点:各种进位制之间的互化.
教学难点:除k取余法的理解以及各进位制之间转换的程序框图及其程序的设计.
教学过程:
知识探究(一):进位制的概念
思考1:进位制是为了计数和运算方便而约定的记数系统,如逢十进一,就是十进制;每七天为一周,就是七进制;每十二个月为一年,就是十二进制,每六十秒为一分钟,每六十分钟为一个小时,就是六十进制;,“满k进一”就是k进制,?
思考2:十进制使用0~9十个数字,那么二进制、五进制、七进制分别使用哪些数字?
思考3:在十进制中10表示十,在二进制中
,若k是一个大于1的整数,则以k为基数的k进制数可以表示为一串数字连写在一起的形式:anan-1…a1a0(k).其中各个数位上的数字an,an-1,…,a1,a0的取值范围如何?
思考4:十进制数4528表示的数可以写成4×103+5×102+2×101+8×100,依此类
比,二进制数110011(2),八进制数7342(8)分别可以写成什么式子?
110011(2)=1×25+1×24+0×23+0×22+1×21+1×20
7342(8)=7×83+3×82+4×81+2×80.
思考5:一般地,如何将k进制数anan-1…a1a0(k)写成各数位上的数字与基数k的幂的乘积之和的形式?
思考6:在二进制中,0+0,0+1,1+0,1+1的值分别是多少?
知识探究(二):k进制化十进制的算法
思考1:二进制数110011(2)化为十进制数是什么数?
110011(2)=1×25+1×24+0×23+0×22+1×21+1×20 =32+16+2+1=51.
思考2:二进制数右数第i位数字ai化为十进制数是什么数?
例1 将下列各进制数化为十进制数.
(1)10303(4) ; (2)1234(5).
10303(4)=1×44+3×42+3×40=307.
1234(5)=1×53+2×52+3×51+4×50=194.
知识探究(三):除k取余法
思考1:二进制数101101(2)化为十进制数是什么数?十进制数89化为二进制数是什么数?
思考2:上述化十进制
算法第7课时 进位制 来自淘豆网m.daumloan.com转载请标明出处.