下载此文档

阿里巴巴数据分析师笔试题 参考答案.docx


文档分类:管理/人力资源 | 页数:约4页 举报非法文档有奖
1/4
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/4 下载此文档
文档列表 文档介绍
阿里巴巴数据分析师笔试题+参考答案参考答案: 异常值(Outlier)是指样本中的个别值,其数值明显偏离所属样本的其余观测值。在数理统计里一般是指一组观测值中与平均值的偏差超过两倍标准差的测定值。 Grubbs’test(),又叫maximumnormedresidualtest,是一种用于单变量数据集异常值识别的统计检测,它假定数据集来自正态分布的总体。未知总体标准差σ,在五种检验法中,优劣次序为:t检验法、格拉布斯检验法、峰度检验法、狄克逊检验法、偏度检验法。参考答案: 聚类分析(clusteranalysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术。聚类分析也叫分类分析(classificationanalysis)或数值分类(numericaltaxonomy)。聚类与分类的不同在于,聚类所要求划分的类是未知的。聚类分析计算方法主要有:层次的方法(hierarchicalmethod)、划分方法(partitioningmethod)、基于密度的方法(density-basedmethod)、基于网格的方法(grid-basedmethod)、基于模型的方法(model-basedmethod)等。其中,前两种算法是利用统计学定义的距离进行度量。 k-means算法的工作过程说明如下:首先从n个数据对象任意选择k个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。其流程如下: (1)从n个数据对象任意选择k个对象作为初始聚类中心; (2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分; (3)重新计算每个(有变化)聚类的均值(中心对象); (4)循环(2)、(3)直到每个聚类不再发生变化为止(标准测量函数收敛)。优点:本算法确定的K个划分到达平方误差最小。当聚类是密集的,且类与类之间区别明显时,效果较好。对于处理大数据集,这个算法是相对可伸缩和高效的,计算的复杂度为O(NKt),其中N是数据对象的数目,t是迭代的次数。一般来说,K 缺点:,但非常难以选定;。表A结构如下: Member_ID(用户的ID,字符型) Log_time(用户访问页面时间,日期型(只有一天的数据)) URL(访问的页面地址,字符型) 要求:提取出每个用户访问的第一个URL(按时间最早),形成一个新表(新表名为B,表结构和表A一致) 参考答案: createtableBasselectMember_ID,min(Log_time),URLfromAgroupbyMember_ID; 以下是一家B2C电子商务网站的一周销售数据,该网站主要用户群是办公室女性,销售额主要集中在5种产

阿里巴巴数据分析师笔试题 参考答案 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数4
  • 收藏数0 收藏
  • 顶次数0
  • 上传人bb21547
  • 文件大小17 KB
  • 时间2019-01-22
最近更新