下载此文档

sas主成分分析与因子分析.pptx


文档分类:高等教育 | 页数:约90页 举报非法文档有奖
1/90
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/90 下载此文档
文档列表 文档介绍
“分析家”。其基本思想是设法将原来众多的具有一定相关性的指标(比如p个指标),重新组合成一组新的互不相关的综合指标来代替原来指标。通常数学上的处理就是将原来p个指标作线性组合,作为新的综合指标。但是这种线性组合,如果不加限制,则可以有很多,应该如何去选取呢?在所有的线性组合中所选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来p个指标的信息,再考虑选取F2即选第二个线性组合。为了有效地反映原有信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1,F2)=0。称F2为第二主成分,依此类推可以构造出第三、第四、…、第p个主成分。(多元观测值),每个样品观测p项指标(变量):X1,X2,…,Xp,得到原始数据资料阵:其中Xi=(x1i,x2i,…,xni)',i=1,2,…,p。用数据矩阵X的p个列向量(即p个指标向量)X1,X2,…,Xp作线性组合,得综合指标向量:简写成:Fi=a1iX1+a2iX2+…+apiXpi=1,2,…,p为了加以限制,对组合系数ai'=(a1i,a2i,…,api)作如下要求:即:ai为单位向量:ai'ai=1,且由下列原则决定:1)Fi与Fj(i≠j,i,j=1,…,p)互不相关,即Cov(Fi,Fj)=ai'ai=0,其中Σ是X的协方差阵。2)F1是X1,X2,…,Xp的一切线性组合(系数满足上述要求)中方差最大的,即,其中c=(c1,c2,…,cp)'F2是与F1不相关的X1,X2,…,Xp一切线性组合中方差最大的,…,Fp是与F1,F2,…,Fp-1都不相关的X1,X2,…,Xp的一切线性组合中方差最大的。满足上述要求的综合指标向量F1,F2,…,Fp就是主成分,这p个主成分从原始指标所提供的信息总量中所提取的信息量依次递减,每一个主成分所提取的信息量用方差来度量,主成分方差的贡献就等于原指标相关系数矩阵相应的特征值i,每一个主成分的组合系数ai'=(a1i,a2i,…,api)就是相应特征值i所对应的单位特征向量ti。方差的贡献率为,i越大,说明相应的主成分反映综合信息的能力越强。(1)计算协方差矩阵计算样品数据的协方差矩阵:Σ=(sij)pp,其中i,j=1,2,…,p(2)求出Σ的特征值及相应的特征向量求出协方差矩阵Σ的特征值12…p>0及相应的正交化单位特征向量:则X的第i个主成分为Fi=ai'Xi=1,2,…,p。(3)选择主成分在已确定的全部p个主成分中合理选择m个来实现最终的评价分析。一般用方差贡献率解释主成分Fi所反映的信息量的大小,m的确定以累计贡献率达到足够大(一般在85%以上)为原则。(4)计算主成分得分计算n个样品在m个主成分上的得分:i=1,2,…,m(5)标准化实际应用时,指标的量纲往往不同,所以在主成分计算之前应先消除量纲的影响。消除数据的量纲有很多方法,常用方法是将原始数据标准化,即做如下数据变换:其中,,j=1,2,…,p。标准化后的数据阵记为X*,其中每个列向量(标准化变量)的均值为0,标准差为1,数据无量纲。

sas主成分分析与因子分析 来自淘豆网m.daumloan.com转载请标明出处.

非法内容举报中心
文档信息
  • 页数90
  • 收藏数0 收藏
  • 顶次数0
  • 上传人wz_198613
  • 文件大小882 KB
  • 时间2019-01-29