抽象函数的对称性、:抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于定义域内的每一个,都存在非零常数,使得恒成立,则称函数具有周期性,叫做的一个周期,则()也是的周期,所有周期中的最小正数叫的最小正周期。个人收集整理勿做商业用途分段函数的周期:设是周期函数,在任意一个周期内的图像为C:。把个单位即按向量在其他周期的图像:。2、奇偶函数:设①若②若。分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:①点②③④⑤(2)轴对称:对称轴方程为:。①关于直线②函数关于直线成轴对称。③关于直线成轴对称。二、函数对称性的几个重要结论(一)函数图象本身的对称性(自身对称)若,则具有周期性;若,则具有对称性:“内同表示周期性,内反表示对称性”。1、图象关于直线对称推论1:的图象关于直线对称推论2、的图象关于直线对称推论3、的图象关于直线对称2、的图象关于点对称推论1、的图象关于点对称推论2、的图象关于点对称推论3、的图象关于点对称(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、偶函数与图象关于Y轴对称2、奇函数与图象关于原点对称函数3、函数与图象关于X轴对称4、:函数与图象关于直线对称推论2:函数与图象关于直线对称推论3:函数与图象关于直线对称(三)抽象函数的对称性与周期性1、抽象函数的对称性性质1若函数y=f(x)关于直线x=a轴对称,则以下三个式子成立且等价:(1)f(a+x)=f(a-x)(2)f(2a-x)=f(x)(3)f(2a+x)=f(-x)性质2若函数y=f(x)关于点(a,0)中心对称,则以下三个式子成立且等价:(1)f(a+x)=-f(a-x)(2)f(2a-x)=-f(x)(3)f(2a+x)=-f(-x)易知,y=f(x)为偶(或奇)函数分别为性质1(或2)当a=0时的特例。2、复合函数的奇偶性定义1、若对于定义域内的任一变量x,均有f[g(-x)]=f[g(x)],则复数函数y=f[g(x)]为偶函数。个人收集整理勿做商业用途定义2、若对于定义域内的任一变量x,均有f[g(-x)]=-f[g(x)],则复合函数y=f[g(x)]为奇函数。个人收集整理勿做商业用途说明:(1)复数函数f[g(x)]为偶函数,则f[g(-x)]=f[g(x)]而不是f[-g(x)]=f[g(x)],复合函数y=f[g(x)]为奇函数,则f[g(-x)]=-f[g(x)]而不是f[-g(x)]=-f[g(x)]。个人收集整理勿做商业用途(2)两个特例:y=f(x+a)为偶函数,则f(x+a)=f(-x+a);y=f(x+a)为奇函数,则f(-x+a)=-f(a+x)个人收集整理勿做商业用途(3)y=f(x+a)为偶(或奇)函数,等价于单层函数y=f(x)关于直线x=a轴对称(或关于点(a,0)中心对称)
函数奇偶性、对称性、周期性知识点归纳总结 来自淘豆网m.daumloan.com转载请标明出处.