概率统计与排列组合二项式定理
安徽理
(12)设,则.
(12)【命题意图】.
【解析】,,所以.
(20)(本小题满分13分)
工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别,假设互不相等,且假定各人能否完成任务的事件相互独立.
(Ⅰ)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率。若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?
(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为,其中是的一个排列,求所需派出人员数目的分布列和均值(数字期望);
(Ⅲ)假定,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。
(20)(本小题满分13分)本题考查相互独立事件的概率计算,考查离散型随机变量及其分布列、均值等基本知识,考查在复杂情境下处理问题的能力以及抽象概括能力、合情推理与演绎推理,分类读者论论思想,应用意识与创新意识.
解:(I)无论以怎样的顺序派出人员,任务不能被完成的概率都是,所以任务能被完成的概率与三个被派出的先后顺序无关,并等于
(II)当依次派出的三个人各自完成任务的概率分别为时,随机变量X的分布列为
X
1
2
3
P
所需派出的人员数目的均值(数学期望)EX是
(III)(方法一)由(II)的结论知,当以甲最先、乙次之、丙最后的顺序派人时,
根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值.
下面证明:对于的任意排列,都有
……………………(*)
事实上,
即(*)成立.
(方法二)(i)可将(II)中所求的EX改写为若交换前两人的派出顺序,,当时,交换前两人的派出顺序可减小均值.
(ii)也可将(II)中所求的EX改写为,或交换后两人的派出顺序,,若保持第一个派出的人选不变,当时,交换后两人的派出顺序也可减小均值.
序
综合(i)(ii)可知,当时,EX达到最小. 即完成任务概率大的人优先派出,可减小所需派出人员数目的均值,这一结论是合乎常理的.
安徽文(9) 从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于
(A) (B) (C) (D)
(9)D【命题意图】.
【解析】通过画树状图可知从正六边形的6个顶点中随机选择4个顶点,以它们作为顶点的四边形共有15个,其中能构成矩形3个,.
(20)(本小题满分10分)
某地最近十年粮食需求量逐年上升,下表是部分统计数据:
年份
2002
2004
2006
2008
2010
需求量(万吨)
236
246
257
276
286
(Ⅰ)利用所给数据求年需求量与年份之间的回归直线方程;
(Ⅱ)利用(Ⅰ)中所求出的直线方程预测该地2012年的粮食需求量。
温馨提示:答题前请仔细阅读卷首所给的计算公式及说明.
(20)(本小题满分10分)本题考查回归分析的基本思想及其初步应用,回归直线的意义和求法,数据处理的基本方法和能力,考查运用统计知识解决简单实际应用问题的能力.
解:(I)由所给数据看出,年需求量与年份之间是近似直线上升,下面来配回归直线方程,为此对数据预处理如下:
年份—2006
-4
-2
0
2
4
需求量—257
-21
-11
0
19
29
对预处理后的数据,容易算得
由上述计算结果,知所求回归直线方程为
即①
(II)利用直线方程①,可预测2012年的粮食需求量为
(万吨)≈300(万吨).
北京理
,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有______个(用数字作答)
【解析】个数为。
、乙两组各四名同学的植树棵数。乙组记录中有一个数据模糊,无法确认,在图中以X表示。
(1)如果,求乙组同学植树棵数的平均数和方差;
(2)如果,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y的分布列和数学期望
2011年高考数学概率统计和排列组合二项式定理汇编 来自淘豆网m.daumloan.com转载请标明出处.