羁切线长定理、弦切角定理、切割线定理、相交弦定理虿以及与圆有关的比例线段蒅[学习目标],这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。:顶点在圆上,一边和圆相交,另一边和圆相切的角。肄直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个):弦切角等于其所夹的弧所对的圆周角。:圆周角,圆心角,弦切角,圆内角,圆外角。,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 羃结论薁证法蒇相交弦定理膃莂⊙O中,AB、CD为弦,·PB=PC·、BD,证:△APC∽△⊙O中,AB为直径,CD⊥=PA·⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理圆幂定理⊙O中,割线PB交⊙O于A,CD为弦P'C·P'D=r2-OP'2延长P'O交⊙O于M,延长OP'交⊙O于N,用相交弦定理证;过P作切线用切割线定理勾股定理证PA·PB=OP2-r2r为⊙:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。仅供个人用于学习、研究;不得用于商业用途。Forpersonaluseonlyinstudyandresearch;ürdenpersönlichenfürStudien,Forschung,'étudeetlarechercheuniquementàdesfinspersonnelles;merciales. толькодлялюдей,которыеиспользуютсядляобучения,исследованийинедолжныиспользоватьсявкоммерческихцелях. 以下无正文以下无正文仅供个人用于学习、研究;不得用于商业用途。Forpersonaluseonlyinstudyandresearch;ürdenpersönlichenfürStudien,Forschung,
圆切线长定理、弦切角定理、切割线定理、相交弦定理 来自淘豆网m.daumloan.com转载请标明出处.