目录
一、零件的分析 1
1
1
3
二、工艺规程设计 3
3
3
4
5
7
三、夹具设计 16
16
16
17
17
18
四、设计心得 20
五、参考文献 21
一、零件的分析
第一个功用,启动发动机。
飞轮在发动机上的结构是:在飞轮的同心轴上有个大齿轮,外面还会有一个小齿轮连接电动机,当我们拧动钥匙接通电源以后,启动电机将通过齿轮带动飞轮,进而再带动曲轴、活塞等机件运转,从而启动发动机。我们知道飞轮转动时会产生惯性,这个力的大小取决于飞轮的质量——当飞轮有足够大的运动惯性足以带动发动机运转时,发动机就被启动了。那么,对于启动发动机而言,飞轮是越轻越好还是重一点更好呢?
其实这就如同发动机的最大扭矩同功率的关系是一样。这里有一个公式:飞轮储存的能量=飞轮重量*飞轮转速。飞轮质量越轻,它的运动惯性就越小,启动发动机所需的转速就越高,因为过低的转速不足以让发动机正常工作,这就是为什么赛车的怠速都会比民用车高很多了。比如最极端的一级方程式赛车,怠速为5000转每分钟,令人咋舌吧!相反,如果飞轮质量惯性大,像一些大排量多气缸V型发动机,因为排量大、扭矩大、飞轮的质量也大,所以只需要较低的转速就能保证发动机的正常怠速了,一般可能为每分钟5到6百转。
第二个功用,储存能量。
我们知道四冲程发动机每次做功后还要完成排气、进气、压缩这几个工序,很显然,这四个冲程中,只有做功冲程才是发动机真正发力的冲程,而其它几个冲程中该气缸不仅没有输出能量,反而需要耗费不少能量。我们试想一下,如果没有一个可以存储能量的机件,那么动力输出将是非常不平顺的——在某个缸做功的时候,动力会以爆发的形式输出;而当没有气缸做功的时候,动力又会迅速降低,甚至是负值,那么这样工作状态的发动机显然是无法让人接受的。
飞轮的意义就在于此。做功后热能转化为动能驱动活塞,通过曲轴带动飞轮旋转,利用飞轮所具有的较大惯性将能量存储起来。当某缸做功时吸收部分能量,而当没有气缸做功时则释放部分能量,这样一增一降,才能保证曲轴旋转的均匀性。这时有人会说:要是一台V12发动机不就没事了。不对!V12发动机的这种冲击间隔肯定会比直4发动机要小得多,但是这不代表就会没有,而且出于成本和曲轴旋转平顺性的考虑,飞轮的作用是不可替代的。
从上面的原理我们可以看出,如果飞轮的质量大,那么这种曲轴转速的均匀性就会更好,表现出来就是发动机的平顺性更好,但如果想要实现发动机转速的快速提升,可就很费力了。也就是说,如果飞轮的质量过大,发动机会运转的更平稳,不会有突然的急加速和急减速,但是发动机的响应性会变差,让人感觉迟钝。这也就是我们常说的舒适性很好,但运动性不强.
汽车飞轮设计的基本要求: (1)在任何行驶条件下,能可靠地传递发动机的最大转矩。(2)接合时平顺柔和,保证汽车起步时没有抖动和冲击。(3)分离时要迅速、彻底。(4)从动部分转动惯量小,减轻换挡时变速器齿轮间的冲击。(5)有良好的吸热能力和通风散热效果,保证离合器的使用寿命。 6)避免传动系产生扭转共振,具有吸收振动、缓和冲击的能力。(7)操纵轻便、准确。(8)作用在从动盘上的压力和摩擦材料的摩擦因数在使用过程中变化要尽可能小,保证有稳定的工作性能。(9)应有足够的强度和良好的动平衡。(10)结构应简单、紧凑,制造工艺性好,维修、调整方便等
图1为零件三视图,图2为零件三维图。
飞轮零件简图
(1)主要加工精度要求
1)Φ200mm外圆与Φ38+ 。
2)键槽10±+ 。
3)零件加工后进行静平衡检查。
4)铸造后时效处理。
5)未注明铸造圆角R5。
6)未注倒角2×45°。
(2).其余技术要求:
1)铸造后时效处理。
零件材料为QT500-5,考虑到汽车,货车运行时经常需要挂倒档以倒行或辅助转向,因此零件在工作过程中经常受到冲击性载荷,采用这种材料零件的强度也能保证。由于零件成批生产,而且零件的轮廓尺寸不大,选用球墨铸铁,铸造精度为2级,能保证铸件的尺寸要求,这从提高生产率和保证加工精度上考虑也是应该的。选择毛坯时应该考虑的因素有:零件的
飞轮_课程设计说明书 来自淘豆网m.daumloan.com转载请标明出处.